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Abstract—Physiological signals such as blood pressure might
contain key information to predict a medical condition, but
are challenging to mine. Wavelets possess the ability to unveil
location-specific features within signals but there exists no
principled method to choose the optimal scales and time shifts.
We present a scalable, robust system to find the best wavelet
parameters using Gaussian processes (GPs). We demonstrate
our system by assessing wavelets as predictors for the oc-
currence of acute hypotensive episodes (AHEs) using over 1
billion blood pressure beats. We obtain an AUROC of 0.79
with wavelet features only, and the false positive rate when
the true positive rate is fixed at 0.90 is reduced by 14% when
the wavelet feature is used in conjunction with other statistical
features. Furthermore, the use of GPs reduces the selection
effort by a factor of 3 compared with a naive grid search.

I. INTRODUCTION AND MOTIVATION

Over the past few years the amount of collected medical
data, especially physiological signals, has soared at an
overwhelming rate. Physiological signals are remarkable in
that they are typically very noisy, complex and unstructured:
using large data sets might help overcome those challenging
characteristics and obtain more generalizable results. It is
therefore critical to adopt data mining approaches that can
scale up. Notwithstanding, prediction studies on physiolog-
ical signals often use a modest amount of data.

Wavelets possess the ability to unveil location-specific
features within the signal [1]. They are therefore interesting
predictor candidates to investigate, but there exists no prin-
cipled method to set their scale and time shift parameters
optimally with respect to a prediction problem. While a
simple grid search would yield the optimal wavelet param-
eters, it does not scale. Gaussian processes (GPs) have been
shown to be effective and even sometimes exceed expert-
level performance in tuning machine learning algorithms
[2] [3]. They may offer an efficient method to select the
best wavelet parameters, i.e. the best wavelet features. But
GPs bring their own set of parameters, which leads us to a
reciprocal question: how do GP parameters affect the search
for the best wavelet features?

We explore the use of GPs to select the best wavelet
features in the context of Acute Hypotensive Episode (AHE)
prediction. An AHE occurs when over 90% of the mean
arterial pressure values in a 30 minute window dip below

60 mmHg, according to the most common definition of an
AHE. AHEs represent one of the main dangers patients can
face in intensive care units (ICUs): an AHE can be life-
threatening, and might necessitate an immediate intervention
from a nurse or a physician. The mortality rate of patients
who experienced an AHE is more than twice the average in
the ICU and one third of patients in ICU have at least one
AHE [4]. Pinpointing high-quality AHE predictors would be
a contribution of high impact and value.

In this paper we present a system that selects the best
wavelet predictors for AHE. The selection is performed with
GP in a distributed fashion using a massive, high-resolution
signal data set. We detail the system in Section III.

The main contributions of this paper are to:

o Predict AHEs using wavelet features extracted from
arterial blood pressure (ABP) signals.

o Assess the impact of changing the wavelet parameters,
lag, lead and data set size on the prediction quality.

« Implement a robust, scalable system to perform feature
selection in a distributed fashion using GP.

o Find the best GP parameters and evaluate how much
time it saves when GP is used for feature selection.

The remainder of the paper is organized as follows.
Section II presents the related work, Section III introduces
the methods we use, Section IV reports on our experimental
results, and the paper concludes with a discussion of future
work.

II. RELATED WORK

The problem of AHE prediction drew much attention
because of the 2009 Challenge organized by PhysioNet and
Computers in Cardiology: the goal was to predict AHEs
one hour ahead. Many entries performed well [4], but the
challenge was based on a very small subset of MIMIC:
only 600 hours of ABP, in comparison with the 240,000
hours that the entire data set contains. As a result, some
approaches took advantage of the small size of the data. For
example, the winning entry [5] use generalized regression
neural network multi-models that demand a computationally
extensive training phase. While the challenge resulted in
interesting insights, many proposed ideas fail to scale up.



Wavelets have already been successfully used for ECG [6]
and a few other medical applications [7]. Previous studies
on AHE prediction such as [8] indicated their interest in
investigating digital signal processing features. There exist
many wavelet transforms, which increases the chances of
spotting abnormalities among the signals.

A large-scale machine learning and analytics framework,
beatDB, was built to mine knowledge from large physiolog-
ical signals data sets [9]. It provides flexible configurations
for hypothesis definition and feature aggregation. This work
extends beatDB allowing it to use wavelets and perform
feature selection.

III. METHOD
A. Overview

Our goal is to predict an AHE for some amount of time
ahead (lead time) using a given window of ABP history (lag
time) as shown in Figure 1. Since in this work we focus on
feature selection, we simply use a logistic regression as a
binary, probabilistic classifier, with 5-fold cross-validation.
All features we use are extracted from the ABP signal.

The raw ABP signals are segmented into beats using
a beat onset detection program [10]. As the ABP signal
contains artifacts and noise, we used some heuristics to
detect invalid beats following the method described in [11]
and [12]. Wavelets are extracted for each valid beat. Wavelet
values located in the lag are then aggregated into 10 sub-
windows of same size. We use the mean as the aggregation
function. As a result, for a given wavelet with a given set
of parameters, we obtain 10 features. Note that this is not
what feature selection works on: feature selection will focus
on the sets of parameters.
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Figure 1.  Prediction parameters. ¢ represents the current time. The

prediction window corresponds to the duration of the event we try to predict.
The lead indicates how much time we try to predict ahead. The lag is the
period of time in the past that we use to compute the prediction.

B. Wavelets

Continuous wavelet transforms (CWTs) are a generaliza-
tion of Fourier transforms (FTs). They transform signals
between time (or spatial) domain and frequency domain. The
main difference between CWT and FT is that the former
is localized in both time and frequency while the FT is
only localized in frequency, thereby enabling CWT to spot
abnormalities in a specific part of the ABP signal.

The core idea behind CWT is to use convolutions to
quantify how similar the given signal is compared with the
given wavelet, like with FT. However, unlike FT, we need

to specify both a scale parameter a (a strictly positive real
number, a.k.a. dilation parameter), and a time shift, b (a real
number, a.k.a. position or translation). The resulting formula
is as follows:
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where:

« 1 is the chosen wavelet,
o f is the signal to be analyzed (namely, the ABP signal).

As a result, we can define a single feature on a beat
by specifying one wavelet, one scale and one time shift.
For each CWT we investigate, we try different scales, time
shifts, lags and leads in order to thoroughly explore the
wavelet’s ability to predict an AHE. Assessing a specific
set of parameters is expensive: grid search is to be avoided.
To find the best parameters, we use GP.

C. Gaussian processes for feature selection

A Gaussian process (GP) is a generalization of the Gaus-
sian probability distribution to functions. It is a particular
case of a stochastic process, which is often used to represent
the evolution of some random value over time. We use GP
to accelerate the search for the best wavelet features.

The data is as follows:

o Training set inputs: Zirqin = (21, T2, ..., Tp)

o Training set outputs: Yirain = (Y1, Y2, - Yn)

o Test set inputs: Tiest = (i1, Tty oy Tim)

In our case, to perform feature selection, each z; is
a 4-dimensional vector (lag, lead, scale and time shift),
and each y; is a 1-dimensional vector (AUROC). Zirqin
contains all parameter combinations for which the AU-
ROC has already been computed, and z4.s; are the re-
maining all parameter combinations. The goal is to find
P(Ytest|Ytrains Ttrain, Trest) in order to select among e
the parameter combination z; that is the most likely to yield
a high AUROC.

Since we assume random variables to be Gaussian, we
have a closed-form expression for the distribution of the
outputs that we were trying to find:

P(ytest |ytrain; Ttrain, Itest) ~ N(ﬂytest ) Uitest)

where:

— —1
« A= Ktest—train(Ktrain—train)
o yioor — Mtest + A(ytr(zin - ,utrain)

2 —
o Jytest - Ktestftest - AKtrainftest

K is the covariance matrix, and can be seen as the distance
matrix between all the inputs (training and test sets put
together). The choice of the covariance function, i.e. the
function that we use to compute the covariance between
two inputs, impacts predictions. The covariance function is
typically denoted by k, as it is also called kernel.
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of time, removes all flags the ailing worker might have left
in the database and launches a new node in replacement.

This design results in a robust, scalable system. During
the course of our extensive experiments, it ran smoothly for
4 weeks, and scaled up to 200 nodes despite encountering
all the above-mentioned cluster-related issues.

For further details on GP, see [13].

D. Design and implementation

In order to handle large of data sets, we design a dis-
tributed system. One node is used as a data server with a
large storage capacity that contains all signal data, a variable
number of nodes are used as workers that each computes one
AUROC at a time for a set of parameters, and another node
is used as a database server that contains all the AUROC
results returned by the workers along with the corresponding
scale, time shift, lag, and lead parameters that were used.

The data server and the database server are launched first
and passively wait for workers to connect whenever the latter
need to read or write data. The workers are launched next:
the number of workers can be increased or decreased at any
time. Each worker performs the same three-step cycle:

1) Feature selection: the worker retrieves the database
content and selects the next parameter set to be
computed according to the grid search, random search
or GP. Once the parameter set is selected, the worker
writes a flag in the database so that no other worker
computes the same parameter set.

2) Data aggregation: the worker assembles feature data
as described in Section III-A.

3) Event prediction: the worker performs the AHE pre-
diction task given the assembled feature data as de-
scribed in Section III-A, saves the AUROC in the
database, and removes its previous flag.

Once the computational budget has been reached or the
AUROC has converged, the workers are shut down and
the database contains all the results. Figure 2 presents an
overview of the worker logic, and Figure 3 shows the
interactions between the workers and the database server.

A computer cluster is a hostile environment: router is-
sues, OpenStack DHCP server issues, hard drive failures,
connection issues such as with the NFS server and with the
Matlab license server, nodes being arbitrarily shut down by
the hypervisor, high CPU steal time, and excessive thrashing
on some hypervisors. As a result, we create a fourth type of
node that acts as a garbage worker collector. It shuts down
any worker that fails to return a result in a reasonable amount
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Figure 2.  Worker logic. Each worker iteratively computes AUROCs. A
worker needs around one hour to compute one AUROC.
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Figure 3. Multi-worker architecture synchronized via a result database.

When a worker is launched or has just completed a task, it queries the
database, decides which task to compute next based on the result of the
query, writes a flag in the database indicating that the task is currently being
performed in order to prevent other workers from executing the same task,
carries out the actual task, then writes the result in the database.



IV. EXPERIMENTS
A. Data and computing environment

We use the Multiparameter Intelligent Monitoring in
Intensive Care II (MIMIC II) database version 3, which
is available online for free and was introduced by [14],
[15]. MIMIC II contains a repository of physiological signals
recorded by sensors placed on patients, including the arterial
blood pressure (ABP), on which we will focus in the rest of
the paper.

There are 6232 patient with ABP recordings. We keep the
top 5000 patients with the most ABP data. Since the signal
was recorded at 125 Hz and there are a total of 240,000
hours of ABP data, we have 108 billion samples (240000 X
60 x 60 x 125) and around 1.2 billion beats (0.9 billion
being valid). ABP samples are measured in millimetres of
mercury (mmHg). The ratio of AHE events vs. non-AHE
events is 10%: this strong class imbalance is one of the
main motivations behind the use of AUROC as the metric
for the quality of predictions.

We perform the experiments on an OpenStack computer
cluster equipped with Intel Xeon L5640 processors. The data
is stored on an NFS server. One 2-core OpenStack node with
2 GB of RAM is used as a MySQL database server. The
other OpenStack nodes are launched with 4 cores and 4 GB
of RAM and are used as workers. The number of workers
varies from 1 to 200 depending on resource availability. All
nodes run Ubuntu 12.04 x64 LTE.

B. Wavelet experiments

We first take three different CWTs, viz. Gaussian-2, Haar
and Symlet-2. We choose them among ~100 other CWTs
as those 3 CWTs have a low correlation between each other,
compared to other sets of CWTs. For each, we explore the
first 10 scales, and divide each beat into 19 different time
shifts. We pre-compute all wavelet features since we will
re-use them when trying different leads, lags, and search
parameters: it takes 6 hours using 3 24-core nodes, and
storing the results of each CWT requires 300 GB. We also
vary the lag and lead times by exploring 6 values for each:
[10, 20, 30, 40, 50, 60] minutes. We choose 60 minutes as
the maximum lag and lead times by observing the average
length of a continuous ABP recording. The questions we
investigate in this set of experiments are the following: How
does the choice of the CWT impact AHE prediction? What
are the best scale and time shift? How much data history
(lag time) does one need to make an accurate prediction?
How far ahead can one predict AHE? Does a larger data set
size lead to a significantly more accurate prediction?

To find the best scale and time shift with different lag
and lead times, we perform a grid search for each CWT,
i.e. we exhaustively enumerate all possible combinations of
parameters. This naive approach will give us a baseline.
A worker takes around one hour to compute the AUROC

averaged over 5-fold cross-validation for a given CWT,
scale, time shift, lag and lead. For each CWT we perform
10 x 19 x 6 x 6 = 6840 experiments since we try 10
different scales, 19 different time shifts, 6 different lags and
6 different leads. Exploring one CWT therefore costs 6840
hours (150 days) if not done distributedly. Figure 4 presents
the AUROCs when the lag and the lead times are fixed to
10 minutes, for the Gaussian-2 CWT. Figure 5 shows the
impact of the lag and the lead on the AUROC.
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Figure 4. Heat map of the AUROCS for all 10 scales and 19 time shifts
using the Gaussian-2 CWT using a lag of 10 minutes, and a lead of 10
minutes. The highest AUROC is 0.78 and is achieved with scale 9 and time
shift 95%.
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Figure 5. Influence of the lead on the AUROC for the Gaussian-2 CWT.
For each pair of lag and lead, we take the maximum AUROC achieved
among all 10 scales and 19 time shifts. Increasing the leads reduces the
AUROC, which is not surprising as a higher lead means that the prediction
is made further ahead in time. Increasing the lag from 10 to 30 minutes
improves the AUROC, but once 30 minutes is reached increasing the lag
does not further improve the AUROC.

From these experiments we determine that the choice of
the CWT has an important impact on the prediction’s AU-
ROC. Among the 3 CWTs that we have tried, the Gaussian-
2 CWT yields the highest AUROC. Interestingly, the best
scales and time shifts stay the same when we change of the
lag and lead. Across CWTs we can see some similarities
between the best scales and time shifts. Decreasing the lead
does make AHE easier to predict, but increasing the lag
makes it easier only to some extent: beyond 30 minutes of
lag, adding more history is not useful. Increasing the data set
size up from 1000 to 5000 patients significantly increases
the AUROC (+2.6%) which confirms the importance of



o
o
o

*—* Random search

<& < GP: Linear kernel

<< GP: Cubic kernel

»—» GP: Absolute exponential kernel
@& GP: Squared exponential kernel

Best AUROC found

0.60]

0.55
0

50 100 150 200
Number of computed AUROCs

Figure 6. Impact of the kernel choice on the GP
with the Gaussian-2 CWT. The squared exponen-
tial kernel is the most optimal choice. 10 random
points were used for initialization.
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Figure 7. Impact of the choice of the number of
random points on the search convergence speed,
with the Gaussian-2 CWT. Choosing 10 random
points is optimal.
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Figure 8. Impact of the number of workers on the
convergence speed of the AUROCS obtain with a
GP search, using the Gaussian-2 CWT.

performing large-scale studies.

Lastly, we investigate whether these wavelet features can
improve the prediction quality when added to 14 statisti-
cal features used in [9]: root-mean-square, kurtosis, skew-
ness, systolic blood pressure, diastolic blood pressure, pulse
pressure, beat duration, systole duration, diastole duration,
pressure area during systole, standard deviation, crest factor,
mean, and mean arterial pressure. This comparison is not
performed to explore feature selection, but to additively
assess CWT as predictors.

Table I summarizes the results. Our results show that
adding a wavelet feature leads to a 14% decrease of the
false positive rate (FPR) when the true positive rate (TPR)
is fixed at 0.90. The additive change to the AUROC was
insignificant.

Number of FPR when
Features features AUROC TPR = 0.90
Gaussian-2 CWT with
M scale 9 and time shift 95 10 0.7897 0.61
Haar CWT with scale
@10 and time shift 5 10 0.7187 0.63
Symlet-2 CWT with
3 scale 6 and time shift 5 10 0.7286 0.61
@ 514 initial features using 70 0.9523 0.14
aggregation functions
MH+® 80 0.9529 0.12
2)+ @) 80 0.9528 0.12
3 +@ 80 0.9525 0.12
Table I

CWT features and 14 other features. For each CWT the best scale and
time shift are selected.

C. Gaussian process experiments

In this set experiments we investigate GP to avoid com-
puting exhaustively the AUROCS for all parameter sets. We
only compute the AUROCsS for the parameter sets selected
by the GP based on previously computed AUROCS in order
to orient the search toward the most promising parameter
sets. In particular, we address the following questions: How

much computational effort does using GP save? What are the
optimal GP parameters? How does the number of workers
impact the convergence speed of the GP? How do GP results
compare with the grid search’s best AUROCs?

Figure 6 compares the convergence speed of a GP using
4 different kernels and a random search, for the Gaussian-2
CWT. We see that the choice of the kernel is critical: the
linear and absolute exponential kernels make the GP worse
than the random search, while the squared exponential and
cubic kernels perform significantly better than the random
search. The squared exponential kernel yields a slightly
better result than the cubic kernel.

In order to decide which one to use between the squared
exponential kernel and the cubic kernel, we perform 100
searches with each kernel and look at the standard deviation
of the AUROC as the number of computed AUROCS in-
creases. The standard deviation is a very important property
as in real conditions we will not perform 100 GP searches
but many fewer. We therefore need a kernel that supports a
reliable GP search, i.e. if we perform two searches the results
should be approximately similar (low standard deviation).
Figure 9 compares the standard deviation obtained with the
squared exponential kernel and the cubic kernel for the
Gaussian-2 CWT. The squared exponential kernel is the best
choice as it obtains the highest AUROC on average and has
the smallest standard deviation.

Figure 6 shows that when performing the search with
GP using the squared exponential kernel, one only needs to
compute 50 AUROCsS to find a near-optimal parameter set
(i.e. yielding an AUROC close to the highest achieved with
grid search), while it takes random search over 150 AUROCs
to find a parameter set of similar predictive quality. The use
of GPs reduces the search time by a factor of 3.

Beyond the choice of the kernel, one also needs to decide
the number of randomly chosen parameter sets for which the
AUROC:s need to be computed in order to initialize the GP.
Using the squared exponential kernel we vary the number of
initial random experiments. Choosing 10 random points is



optimal for this experimental data set, as Figure 7 illustrates.

Lastly, we analyze how the number of workers impacts the
convergence speed of the GP. In the previous experiments we
have run the GP on one worker only. Intuitively, increasing
the number of workers should decrease the convergence
speed in terms of number of computed AUROCsSs, because
when one worker fits its GP to find the next parameter set
to compute, it has access to fewer results since more tasks
are being computed concurrently.

For all experiments we obtained similar results for the
Gaussian-2, Haar and Symlet-2 CWTs.

Best AUROC found
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@
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Figure 9.  Standard deviation of the cubic kernel (left) and squared
exponential kernel (right) with the Gaussian-2 CWT.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a scalable, robust system to
perform distributed feature selection on a massive phys-
iological signal data set. With this system we addressed
the problem of AHE prediction and assessed wavelets as
predictors: the best CWT achieved an AUROC of 0.79, and
the FPR when TPR is fixed at 0.90 is reduced by 14%
when the wavelet feature is used in conjunction with other
statistical features. Decreasing the lead does make AHEs
easier to predict, but increasing the lag makes it easier only
to some extent: increasing the lag beyond 30 minutes does
not improve the AUROC. Furthermore, increasing the data
set size up from 1000 to 5000 patients significantly increases
the AUROC (+2.6%) which confirms the importance of
large-scale studies.

The critical issue with using wavelets is the identification
of their optimal parameters. GP allowed us to reduce the
search time by a factor of 3. The squared exponential kernel
is the best choice as it obtains the highest AUROC on
average and has the smallest standard deviation compared
to other kernels. GP can be used to optimized any ordinal
value and can be a very useful method when performing a
grid search is too expensive.

There is still much room for further investigation. We
focused on AHE prediction using ABP because of the impor-
tance of AHEs and the increasing amount of blood pressure
sensors, but our experiments demonstrate that wavelets show
promise to predict other medical conditions based on ABP
or other physiological signals. Furthermore we restricted
ourselves to a very simple classifier, viz. logistic regression,
in order to focus on feature selection. Models specialized for
time series such as dynamic Bayesian networks [16] might
yield higher AUROCS. Lastly, clustering patients may be

beneficial for the prediction as well as it would help address
the variance among patients.
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