
BeatDB: An end-to-end approach to unveil saliencies
from massive signal data sets

by
Franck Dernoncourt

Master of Science, ENS Ulm, Paris (2011)
Master of Science, HEC, Paris (2011)
Master of Science, CNAM, Paris (2011)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2015
c©Franck Dernoncourt, 2014. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

December 9, 2014

Certified by. .
Una-May O’Reilly

Principal Research Scientist, CSAIL
Thesis Supervisor

Certified by. .
Kalyan Veeramachaneni

Research Scientist, CSAIL
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Committee on Graduate Students
Department of Electrical Engineering and Computer Science

2

BeatDB: An end-to-end approach to unveil saliencies from

massive signal data sets

by

Franck Dernoncourt

Submitted to the Department of Electrical Engineering and Computer Science
on December 9, 2014, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Prediction studies on physiological signals are time-consuming: a typical study, even
with a modest number of patients, usually takes from 6 to 12 months. In response
we design a large-scale machine learning and analytics framework, BeatDB, to scale
and speed up mining knowledge from waveforms.

BeatDB radically shrinks the time an investigation takes by:

• supporting fast, flexible investigations by offering a multi-level parameteriza-
tion, allowing the user to define the condition to predict, the features, and
many other investigation parameters.

• precomputing beat-level features that are likely to be frequently used while
computing on-the-fly less used features and statistical aggregates.

In this thesis, we present BeatDB and demonstrate how it supports flexible investi-
gations on the entire set of arterial blood pressure data in the MIMIC II Waveform
Database, which contains over 5000 patients and 1 billion of blood pressure beats.
We focus on the usefulness of wavelets as features in the context of blood pressure
prediction and use Gaussian process to accelerate the search of the feature yielding
the highest AUROC.

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist, CSAIL

Thesis Supervisor: Kalyan Veeramachaneni
Title: Research Scientist, CSAIL

3

4

Acknowledgments

This thesis would not have been possible without the guidance, encouragement and

funding from my advisor, Una-May O’Reilly. I am especially grateful for the latitude

at the beginning of my time in her research group to explore a wide range of topics

and ideas which we gradually narrowed down to form this work. I am also extremely

grateful for Kalyan Veeramachaneni’s ideas and guidance throughout my time in the

group and in the course of this project: as we worked very closely on several projects

Kalyan naturally became my co-advisor.

This first half of this thesis includes text and experiments from the paper Dernoncourt

et al. (2013c): Una-May and Kalyan played a key role in defining the problem to be

addressed as well as pinpointing the most impactful approach. Alexander Waldin and

Chidube Ezeozue helped to extract the data from MIMIC II, Max Kolysh wrote the

script that validates the beats, Julian Gonzalez helped to extract features, Prashan

Wanigasekara and Erik Hemberg gave me a hand to use the NFS, Bryce Kim and

Will Drevo assisted me in using the OpenStack computer cluster, and Dennis Wilson

gave some useful pointers to deal with the Matlab licenses.

The second half includes new experiments that will be published in a near future.

Part of the results were presented at the MIT Big Data Initiative Annual Meeting

2014. In addition to his advisory role, Kalyan identified and defined the problem,

and introduced me to a set of techniques including wavelets and Gaussian processes,

which turned out to be essential and led to some very interesting results.

During these first two years at MIT, I have also worked on MOOC research under

the supervision of Una-May and Kalyan. Our approach to MOOC shared many sim-

ilarities with the work presented in this thesis. I had the pleasure to work with Colin

Taylor, Sebastian Leon, Elaine Han, Zachary Pardos, Sherwin Wu, Chuong Do, Sherif

Halawa, John O’Sullivan, Kristin Asmus, and many people at edX (Veeramachaneni

et al., 2013; Dernoncourt et al., 2013a,b,d).

More generally, my research laboratory, EVO-DesignOpt (Evolutionary Design and

5

Optimization), now renamed as ALFA (Any Scale Learning For All) to reflect its fo-

cus on scaling up machine learning algorithms, was a fruitful environment and I feel

lucky to have been surrounded by such great and diverse colleagues: Quentin Agren,

Ignacio Arnaldo, Brian Bell, Owen Derby, Will Drevo, Chidube Ezeozue, Julian Gon-

zalez, Elaine Han, Erik Hemberg (with whom I had the pleasure to work on distributed

evolutionary computation (Hemberg et al., 2013a,b)), Bryce Kim, Max Kolysh, Sebas-

tian Leon, Zachary Pardos, Dylan Sherry, Colin Taylor, Alexander Waldin, Prashan

Wanigasekara, Dennis Wilson, and Sherwin Wu. This intellectually fruitful research

environment also helped me for my own side projects (Dernoncourt, 2012, 2014a,b).

Beyond my research laboratory, this thesis heavily relied on a 1,500-core OpenStack

computer cluster and I thank the patience of MIT CSAIL technical members Jonathan

Proulx and Stephen Jahl for answering to my dozens of bug reports and other miscel-

laneous issues, and the generosity of Quanta Computer, who donated a large part of

the cluster hardware. Many thanks as well to Garrett Wollman for his Unix expertise

and NFS server skills.

Outside MIT I was lucky to receive much advice from physicians David Dernoncourt

and François De Forges, and some C++ strength from Paul Manners. In addition

to one-to-one exchanges, I frequently used the Q&A communities Quora and Stack

Exchange, which are two tremendous sources of information and great places to ex-

change ideas. I wish the research community followed such an open, collaborative,

constructive model and I strongly hope that research will step-by-step adopt the

principles of open science.

Most importantly, I thank my family and my wonderful girlfriend for their uncondi-

tional supports: moral, financial, technical and mathematical.

6

Contents

1 Introduction 19

1.1 Objectives . 19

1.2 General prediction framework . 20

1.3 General motivations . 21

1.4 Technical challenges . 24

1.5 Contributions . 24

1.6 Organization . 25

2 BeatDB 27

2.1 Definitions . 27

2.2 Schema . 28

2.3 Condition scanner . 32

2.4 Prediction parameters . 32

2.5 Data assembling . 33

2.6 Event prediction . 37

2.7 Parameter selection . 37

2.8 OpenStack and NFS . 38

2.9 Distributed system architecture . 38

2.10 Worker logic . 43

2.11 Cleaning broken workers . 45

2.12 Conclusion . 46

3 The MIMIC data set 49

7

3.1 MIMIC . 49

3.2 Arterial blood pressure measurement 52

3.3 Beat onset detection . 55

3.4 Levels of noise . 58

4 The prediction problem 59

4.1 Acute hypotensive episode (AHE) . 59

4.2 Objectives . 60

4.3 Condition . 60

4.4 Features . 63

4.5 Results . 64

5 Wavelets as features 69

5.1 Objectives . 70

5.2 Wavelets . 71

5.3 Correlation between wavelets . 73

5.4 Experiments . 77

5.4.1 Prediction experiment . 77

5.4.2 Wavelets in addition to the other 14 features 83

5.4.3 Impact of the size of the data set on the prediction accuracy . 85

5.4.4 Computational cost . 85

6 Gaussian process for parameter optimization 87

6.1 Choosing the kernel . 88

6.2 Choosing the number of initial random experiments 96

6.3 Distributed Gaussian Process . 98

7 Conclusions 99

7.1 Contributions . 99

7.2 Future work . 100

7.3 Conclusion . 103

8

8 Abbreviations 105

9 Synonyms 107

A Reading CSV files in Python: a benchmark 115

B On privacy and anonymization of personal data 119

C Column-oriented vs. row-oriented database 121

D Machine learning techniques 127

D.1 Logistic regression . 127

D.2 Metrics . 128

E Gaussian process regression 133

E.1 Gaussian process definition . 133

E.2 The mean vector and the variance-covariance matrix 134

E.3 The intuition behind a covariance matrix 134

E.4 The regression problem . 134

E.5 Computing the covariance matrix . 136

E.6 Computational complexity . 137

F Wavelet library 139

F.1 Choice of library . 139

F.2 Benchmark of library . 140

G Least correlated subset of wavelets from a correlation matrix 145

H Software design 149

H.1 Populating BeatDB . 149

H.1.1 Beat onset detection . 149

H.1.2 Signal data transfer . 151

H.1.3 Beat validation . 151

H.1.4 Condition scanner . 151

9

H.1.5 Feature extraction . 151

H.2 Worker logic . 152

H.3 Results analysis . 152

H.4 Benchmarks . 152

H.5 Code statistics . 153

10

List of Figures

1-1 Effect of data set size on algorithm ranking 22

1-2 Evolution of storage cost: 1980-2010 23

2-1 BeatDB overview . 31

2-2 Prediction parameters . 33

2-3 Visual representation of the feature aggregation algorithm 35

2-4 Visual representation of the feature aggregation algorithm with aggre-

gation functions . 36

2-5 Master/worker architecture: dcap . 41

2-6 Multi-worker architecture synchronized via a result database: grid

search or distributed Gaussian Process 42

2-7 Worker logic . 44

2-8 Average worker cycle time . 46

2-9 Histogram of the average worker cycle time per instance over time . . 47

3-1 MIMIC-II Database organization . 50

3-2 Arterial blood pressure fluctuations 51

3-3 Arterial blood pressure measurement 53

3-4 Impact of the measurement location on the blood pressure values . . 53

3-5 Impact of the damping degree on the blood pressure measurements . 54

3-6 Beat onset detection . 55

3-7 Number of valid beats per patient . 56

3-8 Percentage of valid beats per patient 57

11

3-9 Jump lengths . 57

4-1 Scanning for AHE: number of patients with AHE 61

4-2 Scanning for AHE: number of AHE cases 61

4-3 Scanning for AHE: data imbalance 62

4-4 Impact of the lag on the AUROC . 66

4-5 Impact of the lead on the AUROC 67

4-6 Impact of the lag on the FPR when TPR = 0.9 67

4-7 Impact of the lead on the FPR when TPR = 0.9 68

5-1 Examples of wavelets . 72

5-2 Relation between the function’s time domain, shown in red, to the

function’s frequency domain, shown in blue. Source: Wikipedia. . . . 72

5-3 The Symlet-2 wavelet with different scales and time shifts 73

5-4 Correlation between different wavelets 74

5-5 Correlation between different wavelets 75

5-6 Correlation between different scales: Gaussian-2 75

5-7 Correlation between different scales: Haar 76

5-8 Correlation between different scales: bior3.1 76

5-9 Symlet-2 AUROC heat map for lag 10 and lead 10 78

5-10 Gaussian-2 AUROC heat map for lag 10 and lead 10 78

5-11 Haar AUROC heat map for lag 10 and lead 10 79

5-12 Bior 3.5 AUROC heat map for lag 10 and lead 10 79

5-13 Influence of the lead on the AUROC for the Gaussian-2 wavelet . . . 80

5-14 Influence of the lag on the AUROC for the Gaussian-2 wavelet 80

5-15 Influence of the lead on the AUROC for the Symlet-2 wavelet 81

5-16 Influence of the lag on the AUROC for the Symlet-2 wavelet 81

5-17 Influence of the lead on the AUROC for the Haar wavelet 82

5-18 Influence of the lag on the AUROC for the Haar wavelet 82

5-19 Influence of the data set size on the AUROC for the Gaussian-2 wavelet 85

12

6-1 Impact of the kernel choice on the Gaussian Process with the Symlet-2

wavelet . 91

6-2 Standard deviation of the cubic kernel with the Symlet-2 wavelet . . . 91

6-3 Standard deviation of the squared exponential kernel with the Symlet-2

wavelet . 92

6-4 Impact of the kernel choice on the Gaussian Process with the Gaussian-

2 wavelet . 92

6-5 Standard deviation of the cubic kernel with the Gaussian-2 wavelet . 93

6-6 Standard deviation of the squared exponential kernel with the Gaussian-

2 wavelet . 93

6-7 Impact of the kernel choice on the Gaussian Process with the Haar

wavelet . 94

6-8 Standard deviation of the cubic kernel with the Gaussian-2 wavelet . 94

6-9 Standard deviation of the squared exponential kernel with the Gaussian-

2 wavelet . 95

6-10 Choice of the number of random points with the Symlet-2 wavelet . . 96

6-11 Choice of the number of random points with the Gaussian-2 wavelet . 97

6-12 Choice of the number of random points with the Haar wavelet 97

6-13 Distributed Gaussian Process: impact of the number of instances on

the convergence speed . 98

7-1 ECG and ABP . 102

C-1 RDBMS equivalent of the flat file design 122

C-2 Clustered vs. non-clustered index . 123

C-3 Row-based approach . 124

C-4 Column-based approach . 125

D-1 Receiver operating characteristic curve 131

D-2 ROC curves with 5-fold cross-validation 132

E-1 Covariance matrix . 135

13

F-1 Matlab’s Wavelet Toolbox: cwt() benchmark 1 142

F-2 Matlab’s Wavelet Toolbox: cwt() benchmark 2 143

G-1 Maximum clique in a graph . 146

H-1 SLOC per language . 153

14

List of Tables

2.1 Record raw sample file version 1 . 30

2.2 Record raw sample file version 2 . 30

2.3 Record validation file . 30

2.4 BeatDB condition scanner output . 32

2.5 General prediction framework’s parameters 37

4.1 Parameter for the AHE prediction . 65

5.1 Parameter for the AHE prediction using wavelets 70

5.2 Wavelets in addition to the other 14 features 84

A.1 Reading CSV files in Python: a benchmark 117

D.1 Confusion matrix . 129

15

16

List of Algorithms

1 Feature aggregation algorithm . 34

2 Gaussian process regression . 90

17

18

Chapter 1

Introduction

The focus of our work is methodological: we construct a general approach to make

predictions from a raw data set of physiological waveforms, which we call BeatDB

as it revolves around a database structure. We demonstrate this methodology by

carrying out a set of experiments that take advantage of BeatDB applied to the

problem of blood pressure prediction using the MIMIC II version 3 database. This

chapter presents our objectives, the motivations behind our work as well as the main

challenges we face.

1.1 Objectives

We want to simplify prediction studies on physiological signal datasets. A typical

study, even with a modest number of patients, usually takes from 6 to 12 months.

For that reason, physiological signal datasets have been by and large underexplored.

In response we design a large-scale machine learning and analytics framework, BeatDB,

to scale and speed up mining knowledge from waveforms.

Our objectives for the framework are threefold:

• Multi-level parameterization: as many parameters as possible should be

19

changeable, even structural parameters such as lag and lead, so that any inves-

tigation should be feasible by simple parameterization.

• Lossless storage: the system should import existing data sets into its own

format, which should conserve all the information needed for any future in-

vestigation. The underlying assumption behind this objective is any piece of

information can turn out to be the key for a prediction problem.

• Scalability: physiological signal data sets can be massive, our framework

should be able to scale to cope with any data set size.

We will demonstrate that our framework satisfies these objectives with a specific use

case: predicting blood pressure, more specifically Acute Hypotensive Episodes (AHE),

with the MIMIC waveform database.

1.2 General prediction framework

With the above-mentioned objectives in mind, we design BeatDB’s general prediction

framework, which enables users to assess how much predictive power a set features

contains with regard to an event. Events may be externally defined, i.e. via clinical

data that are not physiological signals, or be detectable within the physiological

signals. To accommodate inexact definitions of an event, the framework allows the

user to parameterize an event. How features are aggregated and how the prediction

is defined (lag and lead) can also be extensively parameterized. In detail:

Step 1: Define an event The user chooses an event (e.g. an acute hypotensive

episode). BeatDB scans the data set to find signal records that contain the event and

for each occurrence of the event identify the event’s start and stop time indices. A

part of the record that precedes the event’s start time index becomes the signal that

is used to make the event prediction and is called lag. The lapse of time between the

end of the lag and the beginning of the event is called the lead.

20

Step 2: Define the data aggregation: The user chooses the length of the lead and

lag. The lag can be divided into several windows. The user chooses which features to

use, and the feature values are aggregated in a multi-level fashion that we will detail

in later sections.

Step 3: Choose the machine learning algorithm: The user selects a machine

learning algorithm, e.g. decision trees, SVM, logistic regression (the logistic regression

is the only machine learning algorithm available at the time of the writing).

Step 4: Choose an evaluation metric for the prediction: The researcher selects

an evaluation metric such as area under the ROC curve, Bayesian risk for a given

cost matrix or Neyman Pearson criterion (the area under the ROC curve is the only

evaluation metric available at the time of the writing).

BeatDB next sweeps the combined ranges of the parameters experimentally, or use

a Gaussian process to orient the search to find the best parameter set. For each

parameter set, it returns a result, which is the quality of the prediction according to

the metric chosen by the user.

We will explain this framework in more details in the rest of the thesis and demon-

strate it on a real use case, the prediction of Acute Hypotensive Episodes (AHE).

1.3 General motivations

The root of our work lies in the tremendous size of medical data sets, or to put it in

a much-hyped term Big Data. Beyond the commercial resonance of the term lies two

core observations from a machine learning perspective:

1. More data usually increases the prediction accuracy.

2. As the data set size increases, the ranking of the prediction models can be

shuffled. To put it otherwise, an algorithm can yield a higher accuracy compared

with another algorithm on a data set of size x, while yielding a lower accuracy

21

on a data set of size 10x.

Figure 1-1 illustrates those two aspects on the natural language processing task of

confusion set disambiguation with a 1-billion-word training corpus.

Figure 1-1: Learning curves of 4 different algorithms for the natural language pro-
cessing task of confusion set disambiguation. A bad algorithm with more data can
beat a good algorithm with less data, and the algorithm ranking is shuffled as the
training data set grows. Source: Banko and Brill (2001).

We are now at a critical time in the history where the cost of storage has become

cheap enough (see Figure 1-2) to easily store most data sets. Concomitantly sen-

sors are becoming omnipresent in our daily life, as epitomized by the Quantified Self

movement, which promotes the data acquisition of anything surrounding an individ-

ual, from food consumed to physiological data such as blood pressure, as explained

in Swan (2013).

As a result, the amount of self-quantifying devices has skyrocketed over the last

few years, either as wearable devices (Mann, 1997) or software applications: Fitbit

Tracker, Jawbone UP, BodyMedia FIT, Samsung Gear Fit, Nike+ FuelBand, Pebble,

22

Figure 1-2: Evolution of storage cost: 1980-2010. Source: Komorowski (2009).

Technogym, WakeMate, Zeo, MyFitnessPal, etc. People’s willingness to share huge

amounts of their data represents a tremendous opportunity for scientists, and in par-

ticular from an applied machine learning perspective. Tung et al. (2011) report that

amongst the customers of personal genomics and biotechnology company 23andMe,

close to 90% consent to participate in research, and around 80% choose to contribute

additional phenotypic data by answering research questions.

However, the main issue in big data often doesn’t stem from the sheer size of data but

from its noisiness as well as its poorly structured or even raw nature. As a result, many

data sets remained un- or under-explored. From a machine learning standpoint, such

unstructuredness causes researchers to create their own ad hoc, temporary structure

designed for a specific experiment. This might hinder reproducibility and compara-

bility as each researcher is working with their own tools and pre-processed data, and

it certainly hinders the amount of experiments that can be done within a given time

window in comparison with a situation of shared development efforts to create to

common, flexible framework.

Appendix B discusses privacy and anonymization of personal data.

23

1.4 Technical challenges

The main technical challenge of this work is to handle the amount of data as well as

its raw nature. The latter requires extensive pre-processing that we will detail later

on. The former forces us to use a distributed file system, since one single hard drive

is not enough to contain the data set. It also leads to a high computational cost even

for simple operations on the data, which require us to use a computer cluster to be

able to perform them in a reasonable amount of time. The technical details will be

exposed in the following chapter.

Each of our three objectives that we have presented in Section 1.1 has its technically

challenging counterpart:

• The multi-level parameterization means that the system should be designed in

such a way that most parameters can be changed, which implies a highly flexible

system design.

• The lossless storage inevitably leads to large data size.

• The scalability objective can only be reached by implementing a distributed,

multithreaded solution.

Beyond the data set itself and the technical challenges, our work is at the intersection

of machine learning, digital signal processing, databases and medicine: unifying those

different fields into a common project was a challenge on its own, as each comes with

a particular culture, set of competences as well as different software and theoretical

approaches.

1.5 Contributions

The contributions of this thesis are threefold:

• Data set size: as far as we know this is the first time that all patients from the

24

MIMIC Waveform data set were used to perform event prediction.

• Scalable, flexible system: every level of our system is designed to be scalable

when deployed on an OpenStack computer cluster, and has its own a set of

parameters that can be easily modified.

• Meta-heuristic layer : our system contains a meta-heuristic layer for feature

discovery.

Our contributions are both methodological and experimental as we demonstrate our

system on a real-world use case.

1.6 Organization

The rest of this thesis is organized as follows:

• Chapter 2 presents the BeatDB framework we created with a focus on the

architecture design and a few technical aspects.

• Chapter 3 presents the MIMIC data set, which is the data set that we use to

demonstrate BeatDB.

• Chapter 4 demonstrates BeatDB with a prediction problem, namely predicting

the acute hypertensive episodes of patients in intensive care unit.

• Chapter 5 demonstrates BeatDB with the same prediction problem as in the

previous chapter but using wavelets.

• Chapter 6 shows how BeatDB uses a Gaussian process for parameter optimiza-

tion for the same prediction problem.

25

26

Chapter 2

BeatDB

In this chapter we present BeatDB: its organization as well as its system design. We

will demonstrate with a real-world use case in the subsequent chapters.

2.1 Definitions

A signal is a series of samples. The terms sample and sample values can be used

interchangeably. In a physiological signal dataset, signals are typically grouped by

records. A record contains all the samples recorded by a sensor for a specific signal on

a continuous period of time. Since sensors can be unreliable, a record might contain

jumps, i.e. periods of time during which no sample is recorded, and samples are

typically noisy, i.e. the sensor add some noise to the ground truth sample.

A physiological signal is the signal recorded by a sensor placed on the body of a living

being or implanted (Hamid Sheikhzadeh, 2007).

A physiological signal data set is a set of records, usually organized by:

• signal type, such as blood pressure,

• location where the signal was measured, such as John Doe’s radial artery.

27

2.2 Schema

The key unit of many physiological signals is the beat (or pulse), which is a much more

meaningful unit to physicians than samples. Furthermore beats are the fundamental

periods of the signal. As a result, BeatDB is organized around beats and features

are computed at the beat-level. Beats offer a fine-grained perspective of the signal:

even though it means that the resulting data take a significantly large amount of

storage space, we do not want to store some aggregation of several beats instead,

such as storing the average of some beat feature over 1-minute period, as we could

lose some precious information. Amongst the objectives we set for the platform is

lossless storage: any piece of information can turn out to be critical for a prediction

problem, and storing aggregations instead of each individual beat would make the

platform useless for some prediction problems.

As a result, the first step to make the signals more exploitable is to detect the beat

onsets. Furthermore, the recording of a signal sometimes contains jumps, that is to

say that the signal was not recorded for a certain lapse of time. We can detect such

jumps as each sample has a timestamp. We therefore add a third type of beat in

addition to valid and invalid beats: jumps.

Lastly, once every beat has been detected and marked as valid, invalid or jump, we

compute a series of features that aim at characterizing them. A feature is a function

that takes as input the samples of one beat, and outputs one real number which we

hope might contain some useful information about the beat, useful meaning that it

may help the machine learning techniques to predict a certain event. Features are

designed to extract some salient information about the beat. We will detail in Section

2.3 which features we compute for the use case we demonstrate.

As a result, for each record we store:

• the list of all samples. At first we used to store them in one CSV file with column

1: sample ID; column 2: sample value. But this turned out to be inefficient

in terms of storage space so we changed the organization of the file to a new

28

format where each row corresponds to one beat and contains all sample values

of the beat. In the use case that we will demonstrate later, this simple trick

allowed us to reduce the size of sample value files from 500 GB to 100 GB, hence

reducing the storage cost, network bandwidth and CPU cost, as those files are

processed by a computer cluster and compressed.

• the list of all beats, which we characterize with three properties and store in

another CSV file. Column 1: sample ID of the first sample in the beat; column

2: sample ID of the last sample in the beat column 2; column 3: beat validity

(valid/invalid/jump).

• for each feature we store the feature value of every beat in one file. Hence if we

compute 10 features we have 10 different files.

Tables 2.1 and 2.3 show a short example of each of those three files. Figure 2-1 shows

an overview of the feature database of BeatDB.

Appendix C explains our choice to use flat files instead of using a relational database

management system (RDBMS), and in particular the advantages of storing data in a

column-oriented fashion instead of the more traditional row-oriented organization.

29

Sample ID Sample value

15684 108.8
15685 105.6
15686 103.2

Table 2.1: First version of the structure of the record raw sample file. Each line
contains a single sample. Every record has its own file, which is why there is no
record ID column.

Sample values: each line contains one entire beat)

68.1 72.8 78.4 85.6 93.6 98.1 95.3 91.2 91.1 ...
variable
length74.4 79.2 85.6 92.8 100.8 108.8 115.2 121.6 ...

73.6 77.6 84.0 91.2 100.0 108.8 117.6 124.8 ...

Table 2.2: Second version of the structure of the record raw sample file. Each line
contains all the samples of one beat. As in the first version of the structure of the
file, every record has its own file, which is why there is no record ID column. The
new version allows to save 80% of disk space, and make feature computation easier
as each feature is computed over one entire beat’s samples.

Sample ID start Sample ID end Flag

46762 46863 0
46864 46961 1
46962 47064 1

Table 2.3: Record validation file. The file aims at flagging which beat are valid
or invalid. Each line corresponds to one beat. The first two columns contain the
temporal location of the beat, and the third column indicates the beat validity: 0
means the beat is invalid, 1 means the beat is valid, and 2 means there is a jump in
the record’s time series. As in the record raw sample files, every record has its own
validation file, hence the absence of a record ID column.

30

Beat onset detection

Beat validation

Raw values:

series of samples

Feature
 extraction

Valid beat

Invalid beat

12.548

4.541

8.546

10.211

1.265

8.679

8.486

-0.198

8.712

Feature 1

Feature 2

Feature 3

7.568

-1.311

9.456

7.568

-1.311

9.456

8.159

-1.266

10.065

BeatDB

Beat Validation Feature 1 Feature 2 Feature 3

Output files

Figure 2-1: BeatDB overview: detecting the beat onsets, validating each beat and
extracting features. Add data is stored is flat files, as described in Section 2.2.

31

2.3 Condition scanner

A condition may be externally defined, i.e. via clinical data, or be detectable within

the signal data. In case the condition is defined based on the signal data, BeatDB

has a scanner component in which we can define medical conditions and vary their

parameters. The scanner will return all the periods of time where the condition occurs

as a CSV file where the first column corresponds to record ID, the second column is

the beat sample ID where the condition starts and the third column corresponds to

the sample ID where the condition ends. Table 2.4 shows an excerpt of this CSV.

Record ID Sample ID start Sample ID ends

3001937 9341485 9592802
3001937 9387199 9691790
3001937 9470969 9707036
3003650 3562407 4068228

Table 2.4: BeatDB condition scanner output. Each line corresponds to one AHE
event. The first column indicates the record under consideration, and the next two
columns specify at what time the event occurred.

2.4 Prediction parameters

Beyond the parameters of the medical condition, the prediction problem has its own

parameters:

1. The lag is expressed in time units (e.g. in minutes) and corresponds to the

amount of data history we allow the model to use when making the prediction.

2. The lead is expressed in time units and corresponds to the period of time be-

tween the last data point the model can use to predict and the first data point

the model actually predicts.

32

3. The prediction window is expressed in time units and corresponds to the time

window we consider when looking for the occurrence of a medical event.

Figure 2-2 illustrates those three parameters that are specific to the prediction

Figure 2-2: Prediction parameters. t represents the current time. The prediction
window corresponds to the duration of the event we try to predict. The lead indicates
how much time we try to predict ahead. The lag is the period of time in the past
that we use from to compute the prediction.

2.5 Data assembling

Once we have both the conditions and the selected features, we can compile the data

set, which will in turn be given to the machine learning algorithm that we will train

to predict the condition (which is AHE in our case). The data set is compiled using

the algorithm detailed in Algorithm 1. Figure 2-3 represents the algorithm visually.

Figure 2-4 shows the data assembly algorithm with aggregation functions, which can

be optionally defined on top of sub-aggregation functions.

As we can see, compiling the data set has its own set of parameters:

• which feature(s) to use,

• how many sub-windows the lag should contain,

• which aggregation function(s) to use,

• how large should the sliding window be.

Table 2.5 summarizes all the parameters handled by BeatDB.

33

Input: Data files, lead, lag, window_slide, number_of_subwindows_in_lag
Output: Compiled data set contained one CSV file

1

2 condition_file = open(‘condition_file.csv’, ‘r’) // Open necessary files
3 output_file = open(‘output_file.csv’, ‘w’)
4

5 for each record do
6 open the feature files, the duration file and the validation file
7 for each occurrence of the condition for the record do
8 in each feature file, set cursor_position to the sample ID start of the

occurrence of the condition.
9 extract_row(cursor_position, True)

10 end
11 while True do
12 set cursor_position on first beat in the record
13 if far away from condition occurrences then
14 extract_row(cursor_position, False)
15 end
16 cursor_position = cursor_position + window_slide
17 if cursor_position is after the end of the file then
18 break
19 end
20 end
21 end
22

23 function extract_row(cursor_position, is_condition_present)
24 row = list()
25 compute lag_first_beat and lag_end_beat
26 for each feature do
27 extract the feature values between lag_first_beat and lag_end_beat
28 split this list of feature values into number_of_subwindows_in_lag lists
29 for each sublist l do
30 for each aggregation function f do
31 row.append(f(l))
32 end
33 end
34 row.append(is_condition_present)
35 output_file.write(row)
36 end
37 end

Algorithm 1: Feature aggregation algorithm

34

Fe
a

tu
re

 a
gg

re
ga

ti
o

n

Lag and leadCursor location Sub-windows Aggregation Recording

C
ur

so
r

p
o

si
ti

on

Fe
a

tu
re

 1

Fe
at

u
re

 2

T
im

e

E
ac

h
 b

lu
e

d
o

t
co

rr
e

sp
o

n
d

s
to

 t
h

e

va
lu

e
 o

f
o

n
e

 f
e

at
u

re
 f

o
r

o
n

e
 b

ea
t

La
g

Le
ad

C
on

d
it

io
n

La
g

Le
ad

Q
u

er
y

co
n

di
ti

on
sc

an
n

er
 t

o
 k

no
w

w
hi

ch
 c

la
ss

 it
 is

C
on

d
it

io
n

Su
b

w
in

d
o

w
 1

Su
b

w
in

d
o

w
 2

Su
b

w
in

d
o

w
 3

Su
b

w
in

d
o

w
 4

Le
ad

C
la

ss
 n

um
be

r:
1

C
on

d
it

io
n

Su
b

w
in

d
o

w
 1

Su
b

w
in

d
o

w
 2

Su
b

w
in

d
o

w
 3

Su
b

w
in

d
o

w
 4

6.
5

7.
1

A
gg

re
ga

ti
o

n
fu

nc
ti

o
n

1
A

gg
re

ga
ti

o
n

fu
nc

ti
o

n
2

2.
3

2.
8

9.
4

9.
2

5.
5

5.
1

6
.5

 ;
7

.1
 ;

 2
.8

 ;
2

.3
 ;

9
.4

 ;
9

.2
 ;

5
.5

1

Th
e

ne
w

 d
at

ap
oi

nt
 is

 a
d

de
d

to

 t
he

 d
at

as
et

A
d

va
n

ce
 c

u
rs

o
r

po
si

ti
on

F
ig
ur
e
2-
3:

V
is
ua

lr
ep
re
se
nt
at
io
n
of

th
e
fe
at
ur
e
ag

gr
eg
at
io
n
al
go

ri
th
m

35

Fea
tu

re
 aggregatio

n

Lag and lead Cursor locationSub-windowsSub-aggregationAggregationRecording

C
urso

r
po

sition

Featu
re 1

Fea
tu

re 2

Tim
e

E
ach

 b
lu

e d
o

t
co

rre
sp

o
n

d
s to

 th
e

valu

e
 o

f o
n

e
 fe

atu
re

 fo
r

o
n

e
 b

ea
t

Lag
Lead

C
ond

itio
n

Lag
Lead

Q
u

ery con
dition

scann
er to

 kno
w

w
hich

 class it is

C
ond

itio
n

Su
b

w
in

d
o

w
 1

Su
b

w
in

d
o

w
 2

Su
b

w
in

d
o

w
 3

Su
b

w
in

d
o

w
 4

Le
ad

C
lass n

um
be

r:
1

C
ond

itio
n

Su
b

w
in

d
o

w
 1

Su
b

w
in

d
o

w
 2

Su
b

w
in

d
o

w
 3

Su
b

w
in

d
o

w
 4

6.5
7.1

Su
b-aggregatio

n
fu

nctio
n 1

Su
b-aggregatio

n
fu

nctio
n 2

2.3
2.8

9.4
9.2

5.5
5.1

8
.2

; 0
.2

1

The new
 d

atap
oint is ad

ded

to
 the dataset

A
d

vance curso
r

p
o

sitio
n

9.1

4.9

9.0

6.3

8.5

5.7

8.9

5.6

O
ption

al step
6.5; 9.4; 8.5; 8.9; 7.1; 9.2; 9.1; 9.0; 2.8; 5.5; 5.7;5.6; 2.3; 5.1; 4.9; 6.3

1

A
ggregatio

n
fu

nctio
n 1

A
ggregatio

n
fu

nctio
n 2

8
.5

; 0
.4

8
.3

; 0
.2

7
.9

; 0
.1

F
igure

2-4:
V
isual

representation
of

the
feature

aggregation
algorithm

.
A
ggregation

functions
can

be
optionally

defined.
A
ggregation

functions
can

be
the

m
ean,kurtosis,etc.,just

like
for

sub-aggregation
functions.

W
hen

aggregation
functions

are
used,the

finalvalues
are

aggregated
over

the
entire

lag,and
not

just
over

sub-w
indow

s.

36

Parameter categories Parameter names

Condition definition Window size, threshold, fre-
quency, variable

Prediction Lag, lead, features

Data aggregation Sub-aggregation window, sub-
aggregation function, aggregation
functions

Table 2.5: General prediction framework’s parameters. The parameters can be di-
vided into three main categories: the parameters that are specific to the condition’s
definition, the parameters that belong to the prediction problem’s statement, and the
parameters that are used during the aggregation of the data.

2.6 Event prediction

Once the data is assembled, BeatDB can learn a model using logistic regression,

and assess its quality by computing the AUC of the ROC (area under the receiver

operating characteristic, aka. AUROC) using cross-validation. Appendix D.1 explains

how logistic regression works, and Appendix D.2 presents the AUROC.

2.7 Parameter selection

BeatDB can explore the parameter space using to different type of search:

• Grid search: the parameter space is explored exhaustively.

• Gaussian process regression: the parameter space is explored using a Gaus-

sian process regression. See Appendix E for an explanation of the theory, and

Algorithm 2 for the actual algorithm algorithm we use.

37

2.8 OpenStack and NFS

Given the size of the data as well to the amount of experiments that are carried out

for this thesis, we use the MIT CSAIL OpenStack computer cluster as well as a 5TB

NFS storage.

OpenStack is a free and open-source software cloud computing platform. A history

of the OpenStack project can be found in Slipetskyy (2011). The MIT CSAIL Open-

Stack cluster contains a total of 768 physical cores using Intel Xeon L5640 2.27GHz

chips (ca. 6,000 virtual cores), 10 Dell r420 servers with dual socket 8 core E5-2450L

(ca. 1,200 virtual cores), and 5 TB of RAM. In the following chapters, we will specify

for each experiment how much resource we use.

As OpenStack workers can mount NFS filesytems and our network has a 10 Gbit/s link

between NFS servers and OpenStack servers, we make a heavy use of this connection

in order to perform computation using OpenStack workers’ CPU and RAM on data

retrieved from the NFS filesytem (BeatDB data).

2.9 Distributed system architecture

We use two different models of communication to distribute computation over the

OpenStack cluster:

• Master/worker pattern: we use dcap presented in Waldin (2013a) which pro-

vides a framework to distribute tasks among workers, each worker being an

OpenStack instance. The master is another OpenStack instance that contains

the list of tasks to assign. The server listens to any request from workers asking

for a new task, and gather data when the task is done. Figure 2-5 presents the

master/worker architecture of dcap.

• Multi-worker synchronized via a result database: even though the master/worker

model is fairly simple, it does require a non-negligible coding overhead, essen-

38

tially to handle connections (listening, data transfer, being robust to connection

issues, etc.). We therefore changed the architecture over the course of the project

to a multi-worker architecture, where each OpenStack instance retrieve a task

by querying a database. To ensure that two instances do not retrieve the same

task, an instance writes a flag in the database to indicate that it is working on

the task. When the task is done, the instance writes the result in the database,

and, if needed, writes files on the NFS filesystem. Figure 2-6 represents this

multi-worker design synchronized via database.

In the rest of the thesis, we will only use the multi-worker system architecture. In

this setting, putting aside the database server, each machine can be interchangeably

called worker, node or instance. We will use the term worker.

The result database contains all the results returned by the workers. By fetching

the result database content, the workers make sure not to compute a parameter set

that has already been done, since whenever a worker starts a task it adds a flag in

the result database. If the workers use a Gaussian process regression to decide which

parameter set to compute, they use the result database content to fit the Gaussian

process.

Figure 2-6 presents a visual representation of the algorithm we use when several

machines are used to compute a grid search or a Gaussian process. In the exam-

ple presented in the figure, we suppose that there are two workers computing tasks

through the grid search or the Gaussian process, Worker #1 and Worker #2. Worker

#2 is computing task #3, while Worker #1 is not computing any task, either because

it was just launched or the previous task was completed. We go through the example

presented in the figure:

1. Worker #1 is looking for the next task to compute. For that purpose, it needs

to retrieve all the task results that had been previously computed from the

database server.

2. Once Worker #1 has retrieved the task results, it either selects the next param-

39

eter set to be done according to the grid search, or it fits a Gaussian process in

order to the determine what is the most promising parameter set to compute

next. Worker #1 makes sure that no other worker is currently computing this

exact same parameter set by checking in the database whether parameter set

has been flagged as being computed (the flag is a -1 in the result_value column).

If another worker is computing the same parameter set, then Worker #1 selects

the second most promising parameter set. If it is also taken, then it selects the

third one and so on until it finds a parameter set that is not being computed.

If Worker #1 cannot find such parameter set, then it means that the search

is over (all parameter sets have been or are being computed) and Worker #1

terminates.

3. Worker #1 leaves a flag in the database so that no other worker can compute

the same parameter set: if for example a third worker is launched right after and

finds its next task to compute by fitting its Gaussian process using the existing

task results, it will choose the same parameter set as Worker #1 because our

algorithm to find the next new task is deterministic. In this case, the third

worker will have to choose its second best choice of parameters (or third, fourth,

etc. depending on which parameter set remained be done, as we have seen in

the previous step).

4. Worker #1 computes its task, task #5.

5. Upon completion of its task, Worker #1 writes the result in the database.

40

server

client

client

99 tasks to do
 1 tasks pending

0 task done

Waiting for new task

Busy with task # 1

Ask for task

server

client

client

Retrieving task #2

Busy with task # 1

Assign task #2

server

client

client

Finishing task #2
Report task #2 result

98 tasks to do
 2 tasks pending

0 task done

98 tasks to do
 1 tasks pending

1 task done

Busy with task # 1

Busy with task # 1

server

client

client

Busy with task #2

98 tasks to do
 1 tasks pending

1 task done

STEP 1

STEP 2

STEP 3

STEP 4

Figure 2-5: Master/worker architecture: dcap. The master contains the list of all
tasks that need to be done. Whenever a worker is idle, it asks the master for a new
task. The master sends the task to the client, the latter performs the task, at the
end of which it return the result to the master, and becomes idle again. The master
must continuously listen to a port so that workers can ask for new tasks and return
results.

41

Worker
#1

task_id server_id param1 param2 result_value
1
2
3
4

15 10 6 0.54
4 20 8 0.71
2 10 7 -1
4 50 2 0.65 Worker

#2

Request previous task results

Busy with task #3

Looking for next task

Busy with task #3

Run grid search or Gaussian Process
to decide the parameters of the task
to compute next

Busy with task #3

Busy with task #3

Busy with task #5

STEP 1

STEP 2

STEP 3

STEP 4

task_id server_id param1 param2 result_value
1
2
3
4

15 10 6 0.54
4 20 8 0.71
2 10 7 -1
4 50 2 0.65

task_id server_id param1 param2 result_value
1
2
3
4
5

15 10 6 0.54
4 20 8 0.71
2 10 7 -1
4 50 2 0.65
1 20 9 -1

Flag next task with -1
 as result value

Preventing other clients from
computing the same task

Worker
#1

Worker
#2

Worker
#1

Worker
#2

Worker
#1

Worker
#2

task_id server_id param1 param2 result_value
1
2
3
4
5

15 10 6 0.54
4 20 8 0.71
2 10 7 -1
4 50 2 0.65
1 20 9 -1

Busy with task #3

Worker
#1

Worker
#2

task_id server_id param1 param2 result_value
1
2
3
4
5

15 10 6 0.54
4 20 8 0.71
2 10 7 -1
4 50 2 0.65
1 20 9 0.68

STEP 5

Task #5 completed
Return task #5 result

Fetch results

Database
server

Database
server

Database
server

Database
server

Database
server

Figure 2-6: Multi-worker architecture synchronized via a result database: grid search
or distributed Gaussian Process.

42

2.10 Worker logic

In earlier sections we explained the parameter selection (Section 2.7), data assembly

(Section 2.5) and event prediction (Section 2.6). We also presented the distributed

system architecture (Section 2.9) and show how workers interact with the rest of the

system. In this section, we explain the logic of each worker.

Each worker perform the same three-step cycle: parameter selection, data assembly

and event prediction. At the end of each cycle the prediction’s quality, namely the

AUROC, is saved in the result database. The time it takes to perform such a cycle

is called the worker cycle time. A worker stops when the parameter space has been

exhausted or when it gets killed by the cleaning script that we will explain in Section

2.11.

Figure 2-7 shows the worker logic when parameters are selected using a Gaussian

process regression.

43

Assembling
data set

Result
database

Features
Validation

files

Run grid
search or
Gaussian
process

1

BeatDB

2

Logistic
regression

3

Parameters

Data set

AUC

Result
database

Production

Communication

1

2 min

1 h

2 min

2 min

Step number

Step duration

Scanner
output

Figure 2-7: Worker logic. Each worker continuously performs a three-step cycle. The
step is to decide which parameter set the next task to compute will have. This step
involves fetching all the current results from the result database, which the decision
of the parameter set will be based on. The second step is to assemble the data ac-
cording to the chosen parameters. This step requires the worker to retrieve data from
BeatDB: to assemble the data the worker needs to retrieve feature files, validation
files and condition scanner outputs. Figure 2-4 details how the data assembly is done.
Lastly, the third step for the worker is to perform predictions by fitting a regression
curve using logistic regression. The prediction quality we chose is the AUROC. This
AUROC along with the problem parameters are saved in the result database. Once
the AUROC result is saved, the worker has completed its cycle and goes back to the
first step. The duration times displayed on this figure are for a specific experiment,
which we will detail later. The message conveyed by these duration times is that
steps 1 and 2 are fast while step 2 is much longer.

44

2.11 Cleaning broken workers

We dedicate up to 150 4-core workers for our experiments, the exact number of

instances at a given time depending on the resource availability, and experiments can

take up to several days. Running a large number of instances for a long period is

interesting from a system standpoint as a large variety of issues can appear. Here are

a few ones that we experienced throughout the project:

• Router issues

• OpenStack DHCP server issues

• Hard drive failure

• Connection issues with the NFS server

• Connection issues with the Matlab license server

• Instances being shutting down due to the hypervisor running out of memory and

running the oom_killer process (out-of-memory killer) without any warning.

• High CPU Steal Time due to OpenStack being configured to overcommit CPUs

by a 4:1 ratio (i.e. there are 4 times more VCPUs than physical ones).

• Thrashing on some hypervisors on Openstack due to OpenStack being config-

ured to overcommit the RAM by a 1.5:1 ratio and because of intensive I/O

work.

Remarkably we avoided network congestion issues thanks to the size of the network

links (10 Gbps).

In order to face this multi-level instability, we run on a 1-core instance a daemon

process that continuously checks each instance and make sure it has returned a result

over the past X hours, X being determined depending on the cycle time a worker

takes on a healthy instance. If not, the instance is terminated and a new one is

launched. In order to avoid the High CPU Steal Time and Thrashing issues, we

sometime reduce the X hours threshold so as to terminate slow instances, in the hope

45

that newly launched instances are allocated to some less stressed hardware resources,

as shown in Figure 2-8.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
ve

ra
ge

 w
o

rk
er

 c
yc

le
 t

im
e

 p
er

 w
o

rk
er

 in
 s

ec
o

n
d

s

Launch time of instance (in minutes)

Average worker cycle time for each worker
(one blue point = one worker)

Expected worker cycle time

0 30 60 90 120 150 180 210 240

Figure 2-8: Average worker cycle time. Each blue point we present one instance. The
worker cycle time on a 100% healthy, unstressed instance should take less than 4000
seconds. The plot shows that the later the instance is launched, the more stressed
the hardware resources on which the instance was launched are.

2.12 Conclusion

In this chapter we have presented BeatDB, which we designed to be both flexible

and scalable. The flexibility stems from its multi-level parameterization: condition

definition, data assembly, feature selection and search method over the parameter

space. The scalability aspect was considered from the beginning and the algorithms

are distributed.

We will demonstrate BeatDB in the next chapters with a real use case: blood pressure

prediction using one of the largest physiological signal data set publicly available,

MIMIC.

46

0

5

10

15

20

25

30

35

< 3000 3000-4000 4000-5000 5000-6000 6000-7000 7000-8000 8000-9000 >9000

N
u

m
b

er
 o

f
w

o
rk

er
s

Average worker cycle time (in seconds)

Figure 2-9: Histogram of the average worker cycle time per instance over time.

47

48

Chapter 3

The MIMIC data set

This chapter presents the data set that we will use in the following chapters for a real

use case of BeatDB, MIMIC. It also presents the signal on which we will focus for

both the features and the medical condition that we will predict: the arterial blood

pressure (ABP).

3.1 MIMIC

We use the Multiparameter Intelligent Monitoring in Intensive Care II database

(MIMIC II) version 3, which is available online for free and was introduced by Moody

and Mark (1996) and Goldberger et al. (2000). In order to protect patients’ privacy,

data was de-identified1 using customized software developed for that purpose (Nea-

matullah et al., 2008): dates were shuffled, names removed and a few other techniques

were used. Figure 3-1 presents an overview of the database.

MIMIC II is divided into two different data sets:

• the Clinical Database: it is a relational database that contains many informa-

tion about ICU patients such as patient demographics, hospital admissions and

1De-identification differs from anonymization in that the latter is supposed to be irreversible
while the former may be re-identified by a trusted party.

49

discharge dates, room tracking, death dates, medications, lab tests, notes by

the medical personnel, and so on. A script is provided to pipe the data into a

PostgreSQL database.

• the Waveform Database: it is a set of flat files that contains 22 different kinds of

signals for each patient. Each flat file is stored using the PhysioBank-compatible

(aka. WFDB-compatible) format, which is a format specific to the organization

that manage MIMIC PhysioNet (2014). We will focus on this data set only in

the rest of the thesis.

Figure 3-1: MIMIC-II Database organization

The Waveform Database gathers 23,180 sets of recordings and over 3 TB of data.

One recording is typically one patient, but in some rare occurrences one recording

can contain several patients when the medical personnel forgot to change the patient

ID, or one patient might be split in several recordings in case the patient came to the

50

ICU several times.

Among the signals, some were recorded at 125 samples per second, such as ECG (elec-

trocardiographic) and ABP (Arterial Blood Pressure), other signals were recorded at

1 sample per second, such as the cardiac output, heart rate and the respiration rate.

We chose to use the ABP for this study, but our framework can be extended to any

other signal.

There are 6,232 patient records that contain ABP. To have a sense of the massiveness

of the data, since the signal was recorded at 125 Hz and we had a total of 240,000

hours of ABP data, we have 108 billion samples (240000 × 60 × 60 × 125). ABP

samples are measured in mmHg (millimetres of mercury). Figure 3-2 shows 5 ABP

beats along with their properties.

Figure 3-2: Arterial blood pressure (ABP) fluctuations. This figure shows 5 ABP
beats and some usual properties. The ABP is measured in millimeter of mercury
(mmHG). The systolic pressure corresponds to the maximum level of mmHG reached
in a beat, while the diastolic pressure is defined as the minimum level of mmHG
reached in a beat. A person’s ABP is usually expressed in terms of the systolic pres-
sure over diastolic pressure: for example, in the first beat, the patient has 120/80,
which is a typical blood pressure. The systole is the period of time when the heart
contracts itself to send the blood to the rest of the body (the term systole etymolog-
ically mean contract). This explains why the pressure increases during the systole.
The diastole is the period of time when the heart refills with blood. Between the
systole and the diastole, there is a brief interruption of smooth flow due to the short
backflow of blood caused by the relaxation of the ventricle: this event is called dicrotic
notch. Source of the figure: PhysiologyWeb (2011).

51

3.2 Arterial blood pressure measurement

The ABP is measured in an invasive way from one of the radial arteries of the patient,

namely using arterial catheterization, as illustrated in Figure 3-3. In order to measure

the blood pressure, the physician first inserts an intra-arterial catheter (aka. arterial

line, or in short A-line) into an artery of the patient2 , such as the radial artery (most

common, as in MIMIC ABP), the brachial artery, the femoral artery, the dorsalis

pedis artery or the ulnar artery. Figure 3-4 shows that the measurement location has

a direct impact on the blood pressure values. The A-line is connected to a tube filled

with a saline solution, which is connected to a pressure bag. A pressure transducer

(aka. pressure sensor) is placed in the tube, and converts pressure into an analog

electrical signal.

As detailed in Gomersall (2014), McGhee and Bridges (2002) and Nickson (2014), the

process of measuring the ABP contains several sources of potential errors:

• Transducer: the position of the transducer influences the measured values:

whenever patient position changes, the transducer height should be accordingly

modified. Also, the transducer must be accurately leveled to the atmospheric

pressure.

• Clotting in the arterial catheter: blood clots might form on the tips of arterial

catheters.

• Tubing: there must be no air bubble in the tubing.

• Damping degree: all hemodynamic monitoring systems are damped, which

means that the amplitude of the signal has been reduced. As shown in Fig-

ure 3-5, the damping degree must be carefully chosen.

• Device failure: a component might start malfunctioning for some technical rea-

son, independently of the actions of the nurse or the physician.

2Srejic and Wenker (2003) present a series of pictures that show how to place an A-line. The
insertion is most frequently painful for the patient: some anesthetic is often prescribed to reduce
the pain.

52

Figure 3-3: Arterial blood pressure measurement. An intra-arterial catheter (aka.
arterial line, or in short A-line) is inserted into the patient’s radial artery and is
connected to a pressure bag through a tube filled with a saline solution, which contains
a pressure transducer that records the ABP. Source of the figure: Vaughan et al.
(2011).

Figure 3-4: Impact of the measurement location on the blood pressure values. In
MIMIC ABP, the blood pressure is measured fron one of the radial arteries. MIMIC
also contains the blood pressure measurements from other locations, such as the
femoral artery. Source of the figure: McGhee and Bridges (2002).

53

Figure 3-5: Impact of the damping degree on the blood pressure measurements:
choosing the right damping degree is important to have a well-shaped signal. Source:
Gomersall (2014).

54

3.3 Beat onset detection

We use the open-source software WFDB (WaveForm DataBase) developed by Moody

et al. (2001) to detect the beat onsets. Figure 3-6 shows the output of the beat

detection for twenty beats.

Figure 3-6: Beat onset detection. The blue curve represents the ABP signal; the red
circles correspond to the beginning of each beat as the detected by WFDB.

As the signal is sometimes too noisy and the beat onset detection algorithm is not

flawless, we marked each beat as being valid or invalid by using a beat validation

heuristic, which is detailed in Waldin (2013b) and Sun et al. (2006). The heuristic

consists in a set of 9 rules that defines thresholds for a few properties of a beat, such

as “if the pulse pressure less than 20 mmHg, then the beat is invalid”.

Furthermore, the recording of the ABP signal sometimes contains jumps, that is to

say that the signal was not recorded for a certain lapse of time. We can detect such

jumps as each ABP sample in MIMIC has a timestamp. We therefore add a third

55

type of beat in addition to valid and invalid beats: jumps.

Figure 3-7 shows the number of valid beats for each patient. Figure 3-8 presents the

percentage of valid beats for each patient. Figure 3-9 shows the time elapsed between

two consecutive jumps for all the measurements we have.

Figure 3-7: Number of valid beats per patient. We observe that some patients have
a very small amount of valid beats: we discard those patients’ data in the rest of this
work.

56

Figure 3-8: Percentage of valid beats per patient. We see that the vast majority of
patient has over 80% of valid beats, but we also notice that a few patients had a very
low number of valid beats. We discard those patients’ data in the rest of this work.

Figure 3-9: Duration of each ABP segment, i.e. time elapsed between two jumps. The
abscissa represent the segment number, sorted by length. The ordinate is expressed
in a logarithmic scale and represents the length of the segment.

57

3.4 Levels of noise

As in any data set, it is useful to carefully analyze the noise that affects our data.

The dataset we have formed so far contains several layers of noise:

• The raw ABP signals are noisy. We have to keep in mind that the data was

recorded in ICU where patients are typically in a critical condition and the

medical personnel is under pressure to improve the patient’s condition. For ex-

ample the patient might move during the recording, which can perturb the ABP

recording. By the same token, the nurse might not immediately see that the

sensor is not working properly. Section 3.2 described the difficulty of measuring

the ABP.

• The beat onset detection algorithm generates some noise as it sometimes fails

to properly detect the beat. This might be caused by the first layer of noise,

i.e. noise in the raw ABP sample values. Other factors might play a role:

for instance, ventricular extrasystoles (aka. premature ventricular complexes,

PVCs, or ventricular premature beats) might occur and perturb the beat onset

detection. Kennedy et al. (1985) demonstrated that frequent (>60/h or 1/min)

and complex extrasystoles could occur in apparently healthy subjects, with an

estimated prevalence of 1-4%. They are even more likely to occur when a patient

is in the ICU.

• Patient identification: some patient’s records actually contain the record of

several patients, and conversely a patient might be identified as being several

patients in case he was admitted to the ICU several times.

As such we can regard this database as a low signal-to-ratio (SNR) database. We

hope that the size of the dataset help compensate for the lack of clear signal, but this

certainly represents an important challenge for our work.

58

Chapter 4

The prediction problem

This chapter presents the prediction problem that we will study using BeatDB, based

on the MIMIC data set.

4.1 Acute hypotensive episode (AHE)

The blood pressure of a patient is a critical information in an ICU setting. Abnormal

blood pressure level can be life-threatening, and might necessitate an immediate in-

tervention from a nurse or a physician. We try to predict the occurrence of an acute

hypotensive episode (AHE), which means that the blood pressure stays too low for

too long. Left untreated, such episodes may result in irreversible organ damage and

death. Timely and appropriate interventions can reduce these risks. For this work

we focus on one signal only, the arterial blood pressure, which is both the input and

the output our prediction problem.

As the definition of an AHE differs between physicians, we will make it parametriz-

able. An AHE takes place when, for some time window, with a minimum frequency

(percentage), the mean arterial pressure (MAP) dips below a threshold (in mmHg).

The MAP is the mean value of the blood pressure during one beat. For example,

one definition of an AHE could be an event when 90% of MAP values in a 30 minute

59

window dip below 60 mmHg. We see that the definition of an AHE depends on three

parameters:

1. the time window we consider,

2. the threshold above which we consider that the MAP is too low,

3. the percentage of beats whose MAP is too low.

Given the presence of noise, a fourth parameter is the minimum percentage of valid

beats.

4.2 Objectives

The experiments of this chapter aims at answering the following questions using

BeatDB:

• How does the condition threshold influence the prediction accuracy?

(Section 4.3)

• To what extent will the features listed in Section 4.4 help predict AHEs?

(Section 4.5)

• How does varying the lag and the lead impact the prediction quality?

(Section 4.5)

4.3 Condition

Figure 4-1 shows the impact of the MAP threshold parameter on the number of

patients that experienced AHE. Figure 4-2 illustrates how it impacts the number of

AHE cases that are identified. Figure 4-3 shows how it changes the case (AHE) to

control (non AHE) ratio.

60

Figure 4-1: Number of patients with AHE events as we change the MAP threshold
in the AHE event definition. The higher the threshold, the more patients with AHE
events there are.

Figure 4-2: Total number of AHE cases present as we change the MAP threshold
in the AHE event definition. The higher the threshold, the more balanced the data
becomes.

61

Figure 4-3: Balance between the AHE and non-AHE events as the MAP threshold
changes. The higher the threshold, the fewer AHE events there are.

62

4.4 Features

As mentioned in Chapter 2, BeatDB integrates a storage space for beat-level features.

We detail in this section the 14 features we used. In Chapter 5 we will develop a new

set of features based on wavelets.

Since the ABP signal is sampled at 125 Hz, and a beat typically lasts around 1 second,

one beat contain around 125 samples, each sample value being a simple floating-point

number. A feature is a function that maps a beat’s samples into a single floating-point

number.

Below is the list of features we used. Let x1, x2, · · · , xn be the samples of one beat.

n is the number of samples in one beat, and is typically around 50 and 150, given

that one beat lasts around one second and the blood pressure is sampled at 125

Hz, meaning that we have 125 samples for each second. Let µ = 1
n

∑n
i=1 xi (mean),

µn = 1
n

∑n
i=1(xi − µ)n (nth moment about the mean, aka. nth central moment)), and

σ =
√

1
N

∑n
i=1(xi − µ)2 =

√
µ2 (standard deviation).

1. Root-mean-square (aka. quadratic mean). It measures the magnitude of the

beat samples, and is defined as xrms =
√

1
n
(x21 + x22 + · · ·+ x2n)

2. Kurtosis. It measures of how outlier-prone the beat samples are, or in other

words degree of peakedness of the beat sample distribution. There exist several

variants of kurtosis: we use the the kurtosis proper, which is defined as xkurtosis =
µ4
σ4 (Abramowitz and Stegun, 1972).

3. Skewness. It measures the asymmetry of the beat samples around the beat

sample mean. There exist several variants of skewness: we use the “main” one,

which is defined as xskewness =
µ3
σ3

4. Systolic blood pressure. As presented in Figure 3-2 it is the maximum sample

value in the beat: xsystole = max1≤i≤n xi.

5. Diastolic blood pressure. As presented in Figure 3-2 it is the maximum sample

value in the beat: xdiastole = min1≤i≤n xi.

63

6. Pulse pressure. It is the difference between the systolic and diastolic pressure

measures: xpulse = xsystole − xdiastole.

7. Duration of each beat. It is the number of samples that a beat contains:

xduration = n.

8. Duration of the systole. The systole occupies one third of the beat (Gad, 2008),

hence the formula xsystole_duration = n
3
.

9. Duration of the diastole. The diastole occupies two thirds of the beat (Gad,

2008), hence the formula xdiastole_duration = 2n
3

10. Pressure area during systole: xdiastole_duration =
∑dxsystole_duratione

i=1 (xi − xdiastole)

11. Standard deviation of signal. This corresponds to σ.

12. Crest factor (aka. square root of the peak-to-average ratio). The crest factor

indicates how extreme the peaks are in a waveform. If it is equals to 1, it means

that the signal has no peak. It is defined as xcrest =
xsystole
xrms

.

13. Mean of signal. This corresponds to µ.

14. Mean arterial pressure (MAP). We compute the MAP based on the systolic

and diastolic blood pressure values using the formula presented in Zheng et al.

(2008) in the definition section: xmap =
xsystole+2xdiastole

3
.

4.5 Results

In our experiment we use BeatDB with the 5 different aggregate functions (see Figure

2-4 regarding the use of aggregate functions in BeatDB) and 14 different per beat

features, with 1-minute sub-windows in the lag, resulting in 70 features (5× 14) per

training exemplar. Then we prepare a data set for each parameter combination: 5

MAP thresholds, 4 lags and 6 leads, resulting in 120 combinations. On these, we

execute a 10-fold cross-validation on our lab’s private cloud using approximately 2

nodes with 24 VCPUs each for 48 hours. The parameters are summarized in Table

64

4.1. The results across different condition thresholds and prediction leads and lags

can be viewed in Figure 5.

Parameter names Parameter choice

Condition’s window size 30 minutes
Condition’s threshold 56, 58, 60, 62, 64 mmHg
Condition’s frequency 90%
Condition’s variable MAP
Prediction’s lag 10, 20, 30, 60 minutes
Prediction’s lead 10, 20, 30, 60, 120, 180 minutes
Prediction’s features 14 features
Sub-aggregation window 1 minute
Sub-aggregation function Mean
Aggregation functions Mean, standard deviation, kurtosis, skew, trend
Machine learning algorithm Logistic regression
Evaluation metric AUC of the ROC (aka. AUROC)

Table 4.1: Parameter for the AHE prediction.

Figure 4-4 shows the area under the ROC curve (AUROC) for different lead times,

given maximum lag of 60 minutes for 5 different MAP thresholds. The AUROC

drops as the lead time increases. The prediction problem becomes easier when a

threshold of 56 mmHg is chosen as the average MAP. When this threshold increases,

predicting AHE, given this data, becomes harder. This confirms expectations because

56 mmHg is an extreme threshold point and we would expect that the cohort of

patients with such an extreme condition will be significantly be different then the

rest of the patients. Figure 4-5 shows the AUROC when we change the lag and keep

the lead at its minimum 10 minute duration. In this case, we see that the performance

improves as we increase the lag or historical data taken into account. This is intuitive

because a longer lag provides more signal to learn from.

Next, in order to explore a point solution on the ROC curve, we chose a true positive

rate of 90% for AHE and evaluated the false positive rate. Figures 4-6 and 4-7 show

the results for different lags and leads for different definitions of AHE. As in the

previous results, more signal history helps prediction.

Interestingly, we notice on Figures 4-5 and 4-7 that when the lead becomes very high,

65

Figure 4-4: Impact of the lag on the AUROC with different condition thresholds.
As seen in Section 4.1, the threshold is a value expressed in mmHg above which we
consider that the MAP is too low. As expected, the longer the lag, i.e. the further
we look into the history, the more accurate the prediction becomes, although we see
that past 30 minutes increasing the lag doesn’t matter much. We can also remark
that as the condition threshold increases, the prediction AUROC decreases. This is
due to the fact that increasing the condition threshold result in a larger number of
AHE events, as we saw in Figure 4-2, which become harder to distinguish from the
non-AHE events.

over 120, the AUROC or the FPR starts to increase. This is counter-intuitive because

that would mean that the higher the lead, the more accurate the prediction is. In

fact, this result is due to the fact that when the lead is very high, models start to

overfit as the number of AHE events is getting scarce.

The results of this section were published in Dernoncourt et al. (2013c).

66

Figure 4-5: Impact of the lag on the AUROC with different condition thresholds.
As in Figure 4-4, increasing the condition threshold result in a lower AUROC. Also,
as expected, increasing the lead makes the prediction harder (i.e. lower AUROC),
although we do see some increase when the lead becomes very high due to the scarcity
of AHE events in those situations.

Figure 4-6: Impact of the lag on the FPR when TPR = 0.9. This figure is similar to
Figure 4-4 but with a fixed TPR.

67

Figure 4-7: Impact of the lead on the FPR when TPR = 0.9. This figure is similar
to Figure 4-5 but with a fixed TPR.

68

Chapter 5

Wavelets as features

In the previous chapter we used 14 features aggregated using 5 different statistics,

with only 1 sub-window in the lag, and changed the lag, the lead as well as the

condition threshold. For each parameter set we assemble the data set accordingly

and use logistic regression to predict an AHE event. The quality of the prediction is

accessed using the AUC of the ROC (aka. AUROC).

In this chapter we focus on one specific set of features: continuous wavelet transforms.

Wavelets offer some interesting properties that might be useful to detect abnormalities

in the beat signal, and therefore have the potential to drastically improve the predic-

tion accuracy for some medical conditions. Table 4.1 summarizes all the parameters

that were used for the experiment.

Continuous wavelet transforms present a specific challenge: a scale and a time shift

have to be specified. For each wavelet transform we investigate, we try 10 different

scales and 19 different time shifts in order to thoroughly explore the wavelet’s ability

to predict an AHE. Unlike the previous chapter, we do not change the condition

threshold of the AHE: we fix it at 60, which is the most commonly used value. We use

sub-windows of size a tenth of the lag, instead of 1-minute fixed-size sub-windows as

in the previous experiment, but using only 1 statistic as the sub-aggregation function,

the mean, and we do not use any aggregation function. As a result, we will have 10

69

final features (1 feature × 10 sub-windows × 1 sub-aggregation function). Lastly, we

reduce the length of the lag and the lead in order to avoid the model to overfit, as we

have seen in the previous chapter that high lag and lead cause a shortage of AHEs.

Table 5.1 summarizes all the parameters that we use in experiments presented in this

chapter.

Parameter names Parameter choice

Condition’s window size 30 minutes
Condition’s threshold 60 mmHg
Condition’s frequency 90%
Condition’s variable MAP
Prediction’s lag 10, 20, 30, 40, 50, 60 minutes
Prediction’s lead 10, 20, 30, 40, 50, 60 minutes
Prediction’s features 1 feature (one wavelet with a specific

scale and time shift)
Sub-aggregation window 1

10
of the lag

Sub-aggregation function Mean
Aggregation function None
Machine learning algorithm Logistic regression
Evaluation metric AUC of the ROC (aka. AUROC)

Table 5.1: Parameter for the AHE prediction using wavelets.

5.1 Objectives

We try only one specific wavelet transform at a time to predict AHEs. In other words,

we use just one feature: wavelet transform with a specific scale and time shift. We

want to answer the following questions:

• Which wavelet transform can best help predict the event? (Section 5.4.1)

• What is the best scale and time shift for each wavelet transform, i.e. scale and

time shift that has the highest predictive ability? (Section 5.4.1)

• Does the best scale and time shift for each wavelet transform depend on the lag

or lead? (Section 5.4.1)

70

• Does combining the wavelet features with the 14 features we used in the previous

chapter have any additional discriminatory power for the prediction?

(Section 5.4.2)

• Does a larger data set size lead to a more accurate prediction? (Section 5.4.3)

To find the best scale and time shift with different lag and lead, we perform a grid

search for each wavelet transform (i.e. we exhaustively enumerate all possible combi-

nations of parameters), use a logistic regression and compute the AUC of the ROC

(aka. AUROC) as the evaluation metric. As in the previous chapter, we use the entire

MIMIC Waveform Database, which contains over 1 billion beat and 5000 patients.

For each wavelet transform, all 10 scales and 19 time shifts are pre-computed: we do

not compute them on the fly because computing all scales and time shifts at once is

much more efficient than computing specific scale and time shift one by one. Each

extracted wavelet takes around 300 GB worth of data when compressed. Performing

a grid search for each wavelet transform is a costly process: we will optimize it in

Chapter 6 by using a Gaussian process to explore the space.

We first present motivation behind the use of wavelets, then thoroughly apply it as

features for our prediction problem and present the results we obtain.

5.2 Wavelets

We use wavelets to perform a continuous wavelet transform on a signal. A wavelet is

a brief oscillation with the shape of a wave, hence its name. Figure 5-1 shows three

different wavelets.

Continuous wavelet transforms are a generalization of Fourier transforms. They trans-

form signals between time (or spatial) domain and frequency domain, as shown in

Figure 5-2. The major difference between continuous wavelet transforms and Fourier

transforms is that the former is localized in both time and frequency while the Fourier

transform is only localized in frequency. Subsequently unlike Fourier transforms

71

Figure 5-1: Examples of wavelets. From right to left: Coiflets-1, Meyer, and Haar
wavelets.

wavelets have the ability to unveil location-specific features within the signal (Ad-

dison, 2005), which can be vital to detect tiny abnormalities in specific parts of a

beat. Furthermore there exist many wavelet functions, which increases the chance

to spot useful signals for the prediction problem that we try to solve. Wavelets have

already been used for ECG (Li et al., 1995) and many other medical applications

(Unser and Aldroubi, 1996).

Figure 5-2: Relation between the function’s time domain, shown in red, to the func-
tion’s frequency domain, shown in blue. Source: Wikipedia.

The core idea behind continuous wavelet transform is to use convolutions to quantify

how similar the given signal is compared with the given wavelet, like with the Fourier

transform. However, unlike the Fourier transform, we need to specify both a scale

parameter a (strictly positive real, aka. dilation parameter), and a time shift, b (any

real, aka. position or translation). The resulting formula is the following:

X(a, b; f, ψ) =
1√
a

∫ ∞
−∞

f(t)ψ

(
t− b
a

)
dt

72

where:

• ψ is the chosen wavelet,

• f is the signal to be analyzed.

As a result, we can define a single feature on a beat by specifying one wavelet, one

scale and one time shift. To put it otherwise, choosing one wavelet, one scale and

one timeshift allows us to extract one single value from one beat, which we can try

using in our prediction problem. Figure 5-3 shows the Symlet-2 wavelet with different

scales and time shifts.

Figure 5-3: The Symlet-2 wavelet with different scales and time shifts:
• the leftmost figure shows the Symlet-2 wavelet with scale 0.25 and time shift 0,
• the middle figure shows the Symlet-2 wavelet with scale 1 and time shift 0,
• the rightmost figure shows the Symlet-2 wavelet with scale 1 and time shift 1.

5.3 Correlation between wavelets

Among the 87 wavelet transforms, some are highly correlated. Figures 5-4 and 5-5

show the correlation on some random data between all wavelet transforms for a given

scale using the Pearson’s linear correlation coefficient. Figures 5-6, 5-7 and 5-8 show

the correlation between different scales of the same wavelet transform. The code and

more such figures are available online 1.

1Correlation between all wavelets: http://stackoverflow.com/q/24394549/395857

73

http://stackoverflow.com/q/24394549/395857

Figure 5-4: Correlation between the 65 different non-complex wavelets that are
present in the Matlab’s Wavelet Toolbox. In this figure, we computed the correlation
for the first scale using a random signal.

74

Figure 5-5: Correlation between the 65 different non-complex wavelets, as in Figure
5-4. Here we computed the correlation for the second scale. The main patterns are
similar as in Figure 5-4 but the numbers are sometimes significantly different.

Figure 5-6: Correlation between the first 100 scales of the Gaussian-2 wavelet. We
see that the closer two scales are, the more they are correlated.

75

Figure 5-7: Correlation between the first 100 scales of the Haar wavelet. As with
the Gaussian-2 wavelet in Figure 5-6, the closer two scales are, the more they are
correlated.

Figure 5-8: Correlation between the first 100 scales of the bior3.1 wavelet. The
heatmap looks very different from the Gaussian-2 (Figure 5-6) and Haar (Figure 5-7)
wavelets.

76

5.4 Experiments

5.4.1 Prediction experiment

When computing the continuous wavelet transforms of a beat, three parameters need

to be decided:

1. the wavelet transform to be used;

2. the scale to apply on the wavelet transform;

3. the time shift we are interested in, i.e. where in the beat we want to compute

the wavelet, since wavelets are located both in time and frequency.

We try to find the combination of those three parameters that yields the most accurate

prediction. In other words, we predict the AHE using as the only feature one wavelet

with one scale and one time shift.

In order to find the best three parameters, we explore the first 10 scales for 4 different

wavelet transforms, and divide each beat into 19 different time shifts. As in the

previous chapter, we use the AUROC as the metric for the prediction accuracy.

• Figure 5-9 presents a heat map of the AUROCs for all 10 scales and 19 time

shifts using the Symlet-2 wavelet transform. The best AUROC is 0.72.

• Figure 5-10 shows the same for the Gaussian-2 wavelet transform. The best

AUROC is 0.78.

• Figure 5-10 shows the same for the Haar wavelet transform. The best AUROC

is 0.70.

• Figure 5-12 shows the same for the Bior 3.5 wavelet transform. The best

AUROC is 0.76.

77

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Time shift (%)

1

2

3

4

5

6

7

8

9

10

S
ca

le

0.60 0.65 0.53 0.60 0.61 0.60 0.65 0.60 0.55 0.54 0.55 0.55 0.61 0.61 0.52 0.59 0.60 0.61 0.63

0.59 0.52 0.63 0.56 0.54 0.53 0.54 0.59 0.57 0.54 0.53 0.54 0.53 0.53 0.53 0.54 0.54 0.54 0.53

0.54 0.53 0.62 0.53 0.52 0.53 0.56 0.61 0.57 0.53 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.53 0.58

0.65 0.53 0.60 0.55 0.52 0.52 0.53 0.59 0.59 0.55 0.53 0.54 0.54 0.54 0.54 0.54 0.56 0.58 0.56

0.66 0.53 0.60 0.55 0.52 0.52 0.55 0.59 0.60 0.55 0.53 0.53 0.53 0.53 0.53 0.52 0.56 0.59 0.65

0.72 0.58 0.60 0.55 0.52 0.53 0.54 0.59 0.60 0.56 0.53 0.53 0.53 0.52 0.53 0.52 0.57 0.59 0.68

0.71 0.62 0.62 0.55 0.52 0.53 0.55 0.60 0.61 0.56 0.53 0.52 0.52 0.52 0.52 0.55 0.58 0.53 0.65

0.67 0.68 0.64 0.56 0.52 0.53 0.54 0.60 0.61 0.57 0.53 0.52 0.52 0.51 0.52 0.54 0.58 0.54 0.64

0.66 0.70 0.65 0.57 0.52 0.53 0.55 0.61 0.61 0.57 0.54 0.52 0.52 0.52 0.52 0.55 0.56 0.63 0.54

0.58 0.71 0.68 0.59 0.53 0.53 0.54 0.60 0.62 0.58 0.54 0.52 0.52 0.52 0.53 0.55 0.55 0.64 0.53

0.48

0.52

0.56

0.60

0.64

0.68

0.72

0.76

0.80

Figure 5-9: Heat map of the AUROCs for all 10 scales and 19 timeshifts using the
Symlet-2 wavelet transform using a lag of 10 minutes, and a lead of 10 minutes. The
highest AUROC is 0.72 and is achieved with scale 6 and timeshift 5.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Time shift (%)

1

2

3

4

5

6

7

8

9

10

S
ca

le

0.60 0.59 0.62 0.54 0.54 0.54 0.56 0.60 0.58 0.53 0.53 0.54 0.54 0.53 0.53 0.54 0.54 0.53 0.53

0.55 0.55 0.61 0.55 0.54 0.54 0.56 0.60 0.58 0.54 0.53 0.55 0.54 0.53 0.53 0.53 0.54 0.56 0.57

0.69 0.57 0.60 0.54 0.54 0.54 0.57 0.61 0.59 0.54 0.53 0.55 0.54 0.53 0.53 0.54 0.56 0.59 0.52

0.76 0.64 0.61 0.54 0.53 0.54 0.57 0.61 0.59 0.55 0.53 0.55 0.54 0.53 0.56 0.57 0.58 0.56 0.59

0.74 0.69 0.63 0.55 0.53 0.53 0.58 0.62 0.60 0.55 0.53 0.54 0.54 0.54 0.58 0.59 0.58 0.53 0.67

0.71 0.73 0.66 0.57 0.54 0.54 0.58 0.62 0.61 0.56 0.53 0.54 0.53 0.57 0.60 0.59 0.56 0.51 0.73

0.69 0.74 0.68 0.60 0.55 0.54 0.59 0.62 0.61 0.57 0.54 0.53 0.55 0.58 0.60 0.58 0.54 0.58 0.77

0.68 0.75 0.70 0.62 0.56 0.53 0.59 0.62 0.62 0.58 0.55 0.55 0.56 0.59 0.60 0.57 0.52 0.63 0.78

0.68 0.75 0.72 0.65 0.58 0.54 0.58 0.62 0.62 0.59 0.57 0.56 0.57 0.59 0.59 0.55 0.52 0.67 0.78

0.68 0.75 0.73 0.67 0.59 0.54 0.58 0.62 0.62 0.60 0.58 0.57 0.58 0.58 0.57 0.54 0.56 0.70 0.78

0.48

0.52

0.56

0.60

0.64

0.68

0.72

0.76

0.80

Figure 5-10: Heat map of the AUROCs for all 10 scales and 19 timeshifts using the
Gaussian-2 wavelet transform using a lag of 10 minutes, and a lead of 10 minutes.
The highest AUROC is 0.78 and is achieved with scale 9 and timeshift 95.

78

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Time shift (%)

1

2

3

4

5

6

7

8

9

10

S
ca

le

0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53

0.61 0.65 0.54 0.60 0.60 0.61 0.64 0.59 0.55 0.54 0.56 0.59 0.62 0.63 0.54 0.61 0.62 0.63 0.64

0.63 0.63 0.55 0.60 0.61 0.63 0.64 0.59 0.54 0.54 0.54 0.60 0.62 0.63 0.56 0.62 0.63 0.64 0.65

0.57 0.65 0.54 0.60 0.60 0.63 0.64 0.59 0.55 0.54 0.55 0.59 0.62 0.63 0.57 0.62 0.62 0.64 0.62

0.61 0.64 0.55 0.60 0.61 0.64 0.64 0.59 0.55 0.54 0.56 0.60 0.62 0.63 0.58 0.62 0.63 0.64 0.56

0.58 0.63 0.53 0.60 0.61 0.63 0.64 0.60 0.55 0.54 0.56 0.59 0.62 0.63 0.61 0.62 0.63 0.64 0.59

0.61 0.62 0.55 0.60 0.61 0.64 0.64 0.59 0.55 0.54 0.56 0.60 0.63 0.63 0.62 0.62 0.63 0.65 0.55

0.65 0.62 0.53 0.60 0.61 0.64 0.64 0.60 0.55 0.54 0.56 0.60 0.63 0.63 0.63 0.62 0.63 0.65 0.54

0.66 0.62 0.55 0.60 0.61 0.64 0.64 0.59 0.55 0.54 0.56 0.60 0.63 0.64 0.63 0.63 0.64 0.52 0.56

0.70 0.62 0.54 0.60 0.61 0.64 0.64 0.60 0.56 0.54 0.56 0.60 0.63 0.64 0.63 0.63 0.63 0.53 0.55

0.48

0.52

0.56

0.60

0.64

0.68

0.72

0.76

0.80

Figure 5-11: Heat map of the AUROCs for all 10 scales and 19 timeshifts using the
Haar wavelet transform using a lag of 10 minutes, and a lead of 10 minutes. The
highest AUROC is 0.70 and is achieved with scale 10 and timeshift 5.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Time shift (%)

1

2

3

4

5

6

7

8

9

10

S
ca

le

0.63 0.64 0.55 0.60 0.61 0.63 0.64 0.59 0.55 0.54 0.54 0.59 0.62 0.63 0.57 0.61 0.63 0.64 0.64

0.54 0.57 0.54 0.54 0.53 0.53 0.54 0.53 0.54 0.53 0.53 0.53 0.52 0.53 0.53 0.53 0.53 0.58 0.55

0.58 0.57 0.53 0.59 0.56 0.64 0.55 0.60 0.56 0.53 0.56 0.53 0.62 0.57 0.63 0.54 0.59 0.59 0.54

0.64 0.55 0.60 0.53 0.53 0.53 0.56 0.54 0.56 0.53 0.53 0.53 0.53 0.53 0.54 0.56 0.56 0.56 0.63

0.60 0.57 0.57 0.56 0.60 0.60 0.54 0.57 0.58 0.59 0.55 0.53 0.59 0.54 0.53 0.53 0.59 0.56 0.60

0.61 0.59 0.55 0.59 0.53 0.53 0.56 0.54 0.57 0.57 0.54 0.53 0.54 0.56 0.54 0.58 0.56 0.60 0.61

0.71 0.63 0.53 0.54 0.53 0.54 0.56 0.53 0.57 0.58 0.55 0.53 0.53 0.54 0.58 0.57 0.56 0.62 0.62

0.70 0.62 0.53 0.53 0.53 0.55 0.57 0.53 0.58 0.57 0.54 0.54 0.53 0.55 0.58 0.56 0.57 0.63 0.74

0.63 0.55 0.53 0.53 0.55 0.55 0.59 0.53 0.58 0.58 0.53 0.54 0.54 0.57 0.57 0.56 0.58 0.63 0.75

0.61 0.53 0.53 0.53 0.57 0.56 0.58 0.53 0.58 0.56 0.54 0.54 0.56 0.56 0.55 0.57 0.62 0.53 0.71

0.48

0.52

0.56

0.60

0.64

0.68

0.72

0.76

0.80

Figure 5-12: Heat map of the AUROCs for all 10 scales and 19 timeshifts using the
Bior 3.5 wavelet transform using a lag of 10 minutes, and a lead of 10 minutes. The
highest AUROC is 0.75 and is achieved with scale 9 and timeshift 95.

79

10 20 30 40 50 60
Lead

0.75

0.76

0.77

0.78

0.79
A

U
R

O
C

Lag 10
Lag 20
Lag 30
Lag 40
Lag 50
Lag 60

Figure 5-13: Influence of the lead on the AUROC for the Gaussian-2 wavelet. For
each pair of lag and leag, we take the maximum AUROC achieved among all 10 scales
and 19 timeshifts. Increasing the leads reduces the AUROC, which is not surprising
as a higher lead means that the prediction is made further in time. Increasing the
lag from 10 to 30 minutes improves the AUROC, but once 30 minutes is reached
increasing the lag doesn’t further improve the AUROC.

10 20 30 40 50 60
Lag

0.75

0.76

0.77

0.78

0.79

A
U
R
O
C

Lead 10
Lead 20
Lead 30
Lead 40
Lead 50
Lead 60

Figure 5-14: Influence of the lag on the AUROC for the Gaussian-2 wavelet. The
graph is the transpose of Figure 5-13, so the same conclusions apply.

80

10 20 30 40 50 60
Lead

0.720

0.722

0.724

0.726

0.728

0.730

0.732

0.734

A
U

R
O

C

Lag 10
Lag 20
Lag 30
Lag 40
Lag 50
Lag 60

Figure 5-15: Influence of the lead on the AUROC for the Symlet-2 wavelet. This is
the same graph as Figure 5-13 but for the Symlet-2 wavelet.

10 20 30 40 50 60
Lag

0.720

0.722

0.724

0.726

0.728

0.730

0.732

0.734

A
U
R
O
C

Lead 10
Lead 20
Lead 30
Lead 40
Lead 50
Lead 60

Figure 5-16: Influence of the lag on the AUROC for the Symlet-2 wavelet. This is
the same graph as Figure 5-14 but for the Symlet-2 wavelet.

81

10 20 30 40 50 60
Lead

0.685

0.690

0.695

0.700

0.705

0.710

0.715

0.720

A
U

R
O

C

Lag 10
Lag 20
Lag 30
Lag 40
Lag 50
Lag 60

Figure 5-17: Influence of the lead on the AUROC for the Haar wavelet. This is the
same graph as Figure 5-13 but for the Symlet-2 wavelet.

10 20 30 40 50 60
Lag

0.685

0.690

0.695

0.700

0.705

0.710

0.715

0.720

A
U
R
O
C

Lead 10
Lead 20
Lead 30
Lead 40
Lead 50
Lead 60

Figure 5-18: Influence of the lag on the AUROC for the Haar wavelet. This is the
same graph as Figure 5-14 but for the Symlet-2 wavelet.

82

From those experiments we see that:

• The choice of the wavelet transform has an important impact on the prediction’s

AUROC. Amongst the 4 wavelet transforms that we have tried, the Gaussian-2

wavelet has the highest AUROC when predicting AHEs.

• It is critical to choose the right scale and the time shift. Interestingly, the best

scales and time shifts stay the same when we change of the lag and lead. Across

wavelet transforms we can see some similarities between the best scales and

time shifts.

5.4.2 Wavelets in addition to the other 14 features

Now that we have found the best scale, time shift, lag and lead for each wavelet

transform, we investigate whether these wavelet features can improve the prediction

quality when added to the 14 features used in the previous chapter.

Table 5.2 summarizes the results when wavelet features are added to the 14 previous

features. Our results show that adding a wavelet leads to a negligible increase of the

AUROC, and a slight increase of the FPR when we fix the TPR to 0.90. This result

is not surprising as the 14 previous features had very high AUROC.

Interestingly, when we only consider MAP as a feature and add a wavelet to it, the

increase of the AUROC is more significant, 0.01, which is not negligible as past 0.90

it is generally hard to further increase the AUROC.

As a last observation, even though the Gaussian-2 wavelet achieves a higher AUROC

than the Haar and Haar wavelet when considered as a single feature, when added

with the MAP feature it does not achieve a higher AUROC.

83

Features Number of
features

AUROC FPR when
TPR = 0.90

(1) 14 initial features using the
5 aggregation functions

70 0.9523 0.14

(2) 14 initial features using the
mean aggregation function

14 0.9409 0.19

(3) MAP feature using the 5
aggregation functions

5 0.9092 0.37

(4) Gaussian-2 wavelet with
scale 9 and time shift 95

10 0.7897 0.61

(5) Haar wavelet with scale 10
and time shift 5

10 0.7187 0.63

(6) Symlet-2 wavelet with scale
6 and time shift 5

10 0.7286 0.61

(1) + (4) 80 0.9529 0.12
(1) + (5) 80 0.9528 0.12
(1) + (6) 80 0.9525 0.12
(2) + (4) 24 0.9423 0.15
(2) + (5) 24 0.9430 0.15
(2) + (6) 24 0.9411 0.15
(3) + (4) 15 0.9156 0.24
(3) + (5) 15 0.9123 0.25
(3) + (6) 15 0.9170 0.25

Table 5.2: Wavelets in addition to the other 14 features

84

5.4.3 Impact of the size of the data set on the prediction ac-

curacy

Carrying out the experiments for 5000 patients is computationally expensive. It is

therefore worthwhile to investigate whether this large number of patients is justified.

For that purpose, we use the Gaussian-2 wavelet as a feature and explore the first

10 scales, 19 different time shifts, 6 different lags and 6 different leads as we have

done in the previous section. We perform this experiment with 1000, 2500 and 5000

patients, and compare the best AUROC found. Figure 5-19 summarizes the findings:

increasing the number of patients does have a positive impact on the AUROC.

Figure 5-19: Influence of the data set size on the AUROC for the Gaussian-2 wavelet.

5.4.4 Computational cost

Each experiment, i.e. each time we compute the AUROC for a given wavelet trans-

form, scale, time shift, lag and lead, it takes around 1 hour on a healthy 4-core machine

with average specifications and with a fast network connection to BeatDB data. As we

have seen in the previous section, for one wavelet we perform 10×19×6×6 = 6840 ex-

85

periments since we try 10 different scales, 19 different time shifts, 6 different lags and

6 different leads. This amounts to 6840 hours (150 days) of computation to explore

one wavelet. In the next chapter we will use Gaussian Processes to avoid computing

exhaustively all parameter sets, but instead search for the best parameters in a more

clever fashion.

As indicated in Section 2.8, we use an OpenStack cluster and we dedicate around 100

4-core instances to explore wavelet, the exact number of instances depending on the

resource availability.

86

Chapter 6

Gaussian process for parameter

optimization

As we have seen in the previous section, using a wavelet as a feature requires us to

go through different parameters such as the scale, the time shift, the lag and the lead

so as to find the highest AUROC. Exhaustively searching through those parameters

is computationally costly. For example, so far we have used 10 different scales, 19

different time shifts, 6 different lags and 6 different leads, which means we have to

perform 10 × 19 × 6 × 6 = 6840 experiments to find the best set of parameters. We

would like to cut down this number.

One way could be to simply randomly select those parameters, perform a given

amount of experiments, e.g. 200, and declare that the best AUROC found in those

200 experiments is a reasonable approximation of the best AUROC we could find by

trying all parameters.

However, the heat maps presented in Figures 5-9 and 5-10 reveal some patterns that

we would like to take advantage of to converge faster to the best AUROC. For that

purpose we use Gaussian process regression, inspired by Snoek et al. (2012) and Drevo

(2014).

In this chapter we aim at answering the four following questions:

87

• How much computational effort can using a Gaussian Process save? (Sections

6.1, 6.2 and 6.3)

• What are the optimal Gaussian Process parameters? (Sections 6.1 and 6.2)

• How can we distribute a Gaussian Process over several instances? (Section 6.3)

• To what extent does distributing a Gaussian Process impact its convergence

speed? (Section 6.3)

6.1 Choosing the kernel

Since each experiment with 5000 patients takes around 1 hour, we do not want to

exhaustively compute the search space. Instead of performing a random search, we

choose to model the parameter space with a Gaussian process. We investigate how

much faster the Gaussian process finds the best combination of parameters in com-

parison with the random search, as well as what are the best hyper-parameters to use

for the Gaussian process.

We use a Gaussian process regression as follows: we first compute the AUROC for 10

sets of parameters drawn randomly. Then, we set:

• xtrain to be the 10 combinations of parameters randomly drawn.

• ytrain to be the 10 computed AUROCs (one for each combination of parameters).

• xtest to be the set of all remaining combinations of parameters.

We compute ytest using Gaussian process regression as defined in Appendix E.4. The

ytest contains the expected AUROCs for all remaining parameters. We choose the set

of parameters that yields the highest expected AUROC, compute the AUROC, and

append the results xtrain and ytrain. We iterate this process as many times as needed.

Figures 6-1 and 6-4 compare the convergence speed of a Gaussian process using 4

different kernels and a random search, for the Symlet-2 wavelet and the Gaussian-2

88

respectively. We see that the choice of the kernel is critical: the linear and abso-

lute exponential kernels make the Gaussian process worse than the random search,

while the squared exponential and cubic kernels perform significantly better than the

random search.

The squared exponential kernel yields a slightly better result than the cubic kernel. In

order to decide which one to use between the squared exponential kernel and the cubic

kernel, we perform 100 searches for each kernel and look at the standard deviation of

the AUROC as the number of computed AUROCs increases. The standard deviation

is a very important property as in real conditions we will only perform one Gaussian

process search, not 100. We therefore need a kernel that allows a reliable Gaussian

process search, i.e. if we perform two searches the results should be similar (low

standard deviation).

Figures 6-2 and 6-3 compare the standard deviation obtained with the squared ex-

ponential kernel and the cubic kernel for the Symlet-2 wavelet, Figures 6-5 and 6-9

show the same for the Gaussian-2 wavelet. We see that squared exponential kernel

has a much smaller standard deviation than the cubic kernel.

The conclusion of this experiment is that the squared exponential kernel is the best

choice as it obtains the highest solutions on average and has the smallest standard

deviation.

89

Input: all_parameters_combinations, wavelet_name, number_of_experiments,
number_of_initial_random_points, kernel

Output: xtrain, ytrain
1

2 // Variable initialization
3 xtrain = xtest = ytrain = ytest = []
4

5 // The first parameters are randomly chosen
6 for k = 1, k ≤ number_of_initial_random_points, k++ do
7 parameters = choose one set of parameter among all_parameters_combinations
8 all_parameters_combinations.remove(parameters)
9 xtrain.append(parameters)

10 AUROC = compute_AUROC(parameter)
11 ytrain.append(AUROC)
12 end
13

14 // The first parameters are chosen with a Gaussian process
15 experiments_number = number_of_initial_random_points
16 while experiments_number ≤ number_of_experiments do
17 xtest = all_parameters_combinations \ xtrain
18 ytest = compute_expected_AUROCs(xtrain, xtest, ytrain)
19 best_parameters = parameter combination that gives the highest AUROC in

ytest
20 output_file.write(max(ytest), best_parameters)
21 xtrain.append(best_parameters)
22 ytrain.append(compute_AUROC(best_parameters))
23 experiments_number = experiments_number + 1
24 end
25

26 return xtrain, ytrain
Algorithm 2: Gaussian process regression

90

0 50 150 200100
Number of computed AUROCs

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge
d

ov
er

 1
00

 ru
ns

)

Random
Linear
Cubic
Absolute exponential
Squared exponential

Figure 6-1: Impact of the kernel choice on the Gaussian Process with the Symlet-2
wavelet. The squared exponential kernel is the most optimal choice, closely followed
by the cubic kernel. Both the squared exponential and the cubic kernel perform
better than the random search. The linear and the absolute exponential kernels
perform almost identically and are worse than the random search. Each plot was
averaged over 100 runs.

0 50 150 200100
0.50

0.55

0.60

0.65

0.70

0.75

0.80

Number of computed AUROCs

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Figure 6-2: Standard deviation of cubic kernel with the Symlet-2 wavelet

91

0 50 150 200100
0.50

0.55

0.60

0.65

0.70

0.75

Number of computed AUROCs

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Figure 6-3: Standard deviation of the squared exponential kernel with the Symlet-2
wavelet

0 50 150 200100
0.55

0.60

0.65

0.70

0.75

0.80

Random
Linear
Cubic
Absolute exponential
Squared exponential

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Number of computed AUROCs

Figure 6-4: Same as Figure 6-1 but for the Gaussian-2 wavelet

92

0 50 150 200100
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Number of computed AUROCs

Figure 6-5: Standard deviation of the cubic kernel with the Gaussian-2 wavelet

0 50 150 200100
0.50

0.55

0.60

0.65

0.70

0.75

0.80

Number of computed AUROCs

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Figure 6-6: Standard deviation of the squared exponential kernel with the Gaussian-2
wavelet

93

0 50 150 200100
0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Search type

Random search
GP: Linear kernel
GP: Cubic kernel
GP: Absolute exponential kernel
GP: Squared exponential kernel

Number of computed AUROCs

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Figure 6-7: Same as Figure 6-1 but for the Haar wavelet

0 50 150 200100
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Number of computed AUROCs

Figure 6-8: Standard deviation of the cubic kernel with the Gaussian-2 wavelet

94

0 50 150 200100
0.50

0.55

0.60

0.65

0.70

0.75

0.80

Number of computed AUROCs

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Figure 6-9: Standard deviation of the squared exponential kernel with the Gaussian-2
wavelet

95

6.2 Choosing the number of initial random experi-

ments

Beyond the choice of the kernel, we also need to decide how many initial random

experiments should be done before using the Gaussian process (i.e. the variable

number_of_initial_random_points in Algorithm 2).

Using the squared exponential kernel we vary number_of_initial_random_points

from 1 to 70 to see how it impacts the convergence speed. Figures 6-10, 6-11, and

6-12 present the results for the wavelets Symlet-2, Gaussian-2 and Haar respectively.

The results show that computing 10 initial random experiments before using the

Gaussian process is a good choice.

0 50 150 200100
0.55

0.60

0.65

0.70

0.75

random search
1 initial random points
10 initial random points
20 initial random points
30 initial random points
40 initial random points
50 initial random points
60 initial random points
70 initial random points

Number of computed AUROCs

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Figure 6-10: Impact of the choice of the number of random points on the search
convergence speed, with the Symlet-2 wavelet. Choosing 10 random points is optimal.

96

0 50 150 200100
0.55

0.60

0.65

0.70

0.75

0.80

random search
1 initial random points
10 initial random points
20 initial random points
30 initial random points
40 initial random points
50 initial random points
60 initial random points
70 initial random points

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Number of computed AUROCs

Figure 6-11: Impact of the choice of the number of random points on the search con-
vergence speed, with the Gaussian-2 wavelet. Choosing 10 random points is optimal.

0 50 150 200100
0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

random search
1 initial random points
10 initial random points
20 initial random points
30 initial random points
40 initial random points
50 initial random points
60 initial random points
70 initial random points

Number of computed AUROCs

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Figure 6-12: Impact of the choice of the number of random points on the search
convergence speed, with the Haar wavelet. Choosing 10 random points is optimal.

97

6.3 Distributed Gaussian Process

In the previous experiments we have run the Gaussian Process on one machine only.

In this experiment we analyze how the number of instances impacts the convergence

speed of the Gaussian Process. Intuitively, increasing the number of instances should

decrease the convergence speed because when one machine will fit its Gaussian Process

to find the next parameter set to compute, it will not have access to the result of the

tasks being computed by the other machines.

Figure 6-13 shows the results we obtain, which confirm our intuition.

0 50 150 200100
0.55

0.60

0.65

0.70

0.75

0.80

B
es

t A
U

R
O

C
 fo

un
d

(a
ve

ra
ge

d
ov

er
 1

00
 ru

ns
)

Random search
1 instance
2 instances
5 instances
10 instances
20 instances

Number of computed AUROCs

Figure 6-13: Distributed Gaussian Process: impact of the number of instances on the
convergence speed, using the Gaussian-2 wavelet.

98

Chapter 7

Conclusions

7.1 Contributions

This thesis presented BeatDB. Our contributions are two-fold:

• From a methodological standpoint we designed a system both scalable and flex-

ible. By analyzing existing studies on physiological signals in the literature, we

pinpointed their commonalities and constructed a framework that can accom-

modate many of them. To achieve this goal, we elaborated a modular structure,

each module having its own set of parameters. The modules handle beat de-

tection, beat validation, feature extraction and event prediction. As a result,

BeatDB allows to radically shrink the time an investigation takes since the latter

corresponds to a certain parameterization of the system.

• From an experimental standpoint, as a real use case for BeatDB we presented

many results regarding the features that can predict an AHE event. In partic-

ular, we showed wavelets can be used to predict an AHE event, but the choice

of the wavelet transform, the scale as well as time shift is critical to obtain a

high AUROC. Lastly, we demonstrated that a Gaussian Process help speed up

the search for the right combination of parameters.

99

Throughout this work we showed the need for a system approach when mining knowl-

edge from massive data sets. Beyond allowing faster investigations it is worth noting

that taking a great care of the system design allows higher reproducibility. Prior to

working on BeatDB, we worked on a similar project for education data to analyze

student logs from Coursera and edX (Veeramachaneni et al., 2013; Dernoncourt et al.,

2013a,b,d), which also combined faster investigations and higher reproducibility: we

drew experience from this project when designing BeatDB.

BeatDB has already been used in published studies, such as Waldin (2013b) and Kim

et al. (2014).

7.2 Future work

Building BeatDB required a lot of effort, in terms of design, coding and deployment.

The numerous experiments with BeatDB allowed to thoroughly test the platform and

investigate a real use case.

However, while the foundations of BeatDB are solid, many directions can be investi-

gated to further enhance the platform:

• Patient clustering: as of now BeatDB takes patients randomly from the pool of

all patients in the data set. It would be interesting to add a layer in BeatDB

that would allow researchers to define conditions on which patients could be

clustered. Patients have different medical backgrounds and different conditions,

models that are trained on a specific group of patients should be able to perform

better.

• More machine learning algorithms: it would be useful to extend BeatDB so that

it can incorporate more machine learning algorithms. As most of the software

is written in Python, scikit-learn (Pedregosa et al., 2011) is probably one of

the best option. Since BeatDB is modular, the researcher can insert his own

machine learning module, but offering more machine learning algorithms by

100

default would be more convenient.

• Feature selection: we choose features with low pair-wise correlation, but there

exist more advanced feature selection methods, either filter-type, wrapper-type

or embedded. Filter-type methods might be the best option as unlike wrapper-

type methods they do not involve repeatedly invoking a learning algorithm and

subsequently are much faster (Hall, 1999).

• Feature transformation: as an alternative to feature selection, we could reduce

the dimensionality of data by using feature transformation, using for instance,

principal component analysis or matrix factorization.

• Hyperparameter optimization: Gaussian Process was used to select the best

scale and time shift parameters for the feature wavelets, but it might be in-

teresting to tune other parameters and use other optimization algorithms. We

could even combined hyperparameter optimization with machine learning algo-

rithm selection (Thornton et al., 2013).

• From a technical standpoint, BeatDB can be deployed on an OpenStack cluster,

but it could be useful to support other cloud computing platforms such as

Amazon EC2. Also, given the amount of disk I/O, switching to an in-memory

computing platform such as Hana (Färber et al., 2012a,b) should significantly

boost the performances.

Beyond the platform itself, the experiments we carried out this thesis using the

MIMIC database can be improved in many ways. Below are some ideas that we

think would be worth investigating with BeatDB:

• As we have seen, the arterial blood pressure measurements are noisy. In practice,

physicians and nurses in ICUs typically watch both the blood pressure and the

ECG. Figure 7-1 shows both the ABP and the ECG: they are closely correlated,

and since they are recorded using two different sensors we could use the ECG

to read use the impact of the ABP noise on the predictions.

101

• Given that the definition of the AHE can change from physician to physician,

it could be interesting to see how the prediction accuracy is influenced by the

AHE definition that is used.

• So far we have only used the MIMIC Waveform database. However, a lot

of structured information is contained in other part of the MIMIC database,

namely the Clinical Database. There exists a mapping file1 that links a subset

of patients in the MIMIC Waveform database with their corresponding data

in the MIMIC database, thereby enabling studies using both databases. Most

studies only used the Clinical Database such as Ghassemi et al. (2014), some of

them would tremendously benefit from capturing all the information present in

the Waveform database in addition to the Clinical Database.

Figure 7-1: A lead II ECG with corresponding arterial blood pressure. Source: College
(2012).

1http://physionet.org/physiobank/database/mimic2wdb/matched/

102

http://physionet.org/physiobank/database/mimic2wdb/matched/

7.3 Conclusion

In this work we have built BeatDB, a large-scale machine learning and analytics

framework, designed to make prediction studies on physiological signals significantly

faster and easily reproducible. Even though a lot more work remain to be done, we

hope to have laid a solid, fruitful ground for a profusion of extensions and future works,

either from a system side to improve BeatDB or from an experimental perspective to

use BeatDB to carry out more investigations.

103

104

Abbreviations

The following abbreviations are used in this thesis:

ABP Arterial blood pressure
AHE Acute hypotensive event
AUC Area under the curve
AUROC Area under the receiver operating characteristic curve
CWT Continuous wavelet transforms
DBMS Database management system
DWT Discrete wavelet transforms
ECG Electrocardiogram
GP Gaussian process
ICU Intensive care unit
MAP Mean arterial pressure
MEWCP Maximum edge weight clique problem
MIMIC Multiparameter Intelligent Monitoring in Intensive Care
mmHg Millimetres of mercury
RDBMS Relational database management system
ROC Receiver operating characteristic

105

106

Synonyms

The following terms are used inter-changeably in this thesis:

Central moment Quadratic mean
Covariance function Kernel
Crest factor Square root of the peak-to-average ratio
False positive rate Fall-out, hit rate, recall
Feature Independent variable, covariate, explanatory variable
Intra-arterial catheter Arterial line, A-line
Logistic regression Logit regression
Loss function Cost function
nth moment about the mean nth central moment
Ordinary least squares Linear least squares
Pressure transducer Pressure sensor
Serialization Marshalling, flattening, pickling
Stochastic process Random process
True positive rate Sensitivity

107

108

Bibliography

Abramowitz, M. and Stegun, I. A. (1972). Handbook of mathematical functions: with
formulas, graphs, and mathematical tables. Number 55. Courier Dover Publications.

Addison, P. S. (2005). Wavelet transforms and the ecg: a review. Physiological
measurement, 26(5):R155.

Alted, F. and Fernández-Alonso, M. (2003). Pytables: processing and analyzing
extremely large amounts of data in python. PyCon 2003.

Banko, M. and Brill, E. (2001). Scaling to very very large corpora for natural language
disambiguation. In Proceedings of the 39th Annual Meeting on Association for
Computational Linguistics, pages 26–33. Association for Computational Linguistics.

Bell, R. M. and Koren, Y. (2007). Lessons from the netflix prize challenge. ACM
SIGKDD Explorations Newsletter, 9(2):75–79.

Bennett, J. and Lanning, S. (2007). The netflix prize. In Proceedings of KDD cup
and workshop, volume 2007, page 35.

Chandra, T., Ie, E., Goldman, K., Llinares, T. L., McFadden, J., Pereira, F., Red-
stone, J., Shaked, T., and Singer, Y. (2010). Sibyl: a system for large scale machine
learning. LADIS 2010, 28.

College, O. (2012). Nerve Conduction and Electrocardiograms. http://cnx.org/
content/m42352/latest/?collection=col11534/latest. [Online; accessed 01-
July-2014].

Cornuéjols, A. (2005). Apprentissage et circulation d’information. HDR, Université
Paris-Sud, France.

DBMS2 (2009). Greenplum is going hybrid columnar as well. http://www.dbms2.
com/2009/10/14/greenplum-hybrid-columnar/. [Online; accessed 01-July-2014].

Dernoncourt, D., Hanczar, B., and Zucker, J.-D. (2014). Analysis of feature selection
stability on high dimension and small sample data. Computational Statistics &
Data Analysis, 71:681–693.

Dernoncourt, F. (2012). Replacing the computer mouse. MIT CSAIL Student Work-
shop.

Dernoncourt, F. (2014a). Age of empires is np-hard, even when playing alone.

109

http://cnx.org/content/m42352/latest/?collection=col11534/latest
http://cnx.org/content/m42352/latest/?collection=col11534/latest
http://www.dbms2.com/2009/10/14/greenplum-hybrid-columnar/
http://www.dbms2.com/2009/10/14/greenplum-hybrid-columnar/

Dernoncourt, F. (2014b). Trackmania is np-complete. arXiv:1411.5765.

Dernoncourt, F., Do, C., Halawa, S., O’Reilly, U.-M., Taylor, C., and Veeramacha-
neni, K. (2013a). Moocdb: Developing standards and systems for mooc data sci-
ence. MIT Technical Report.

Dernoncourt, F., Taylor, C., O’Reilly, U.-M., Veeramachaneni, K., Wu, S., Do, C.,
and Halawa, S. (2013b). Moocviz: A large scale, open access, collaborative, data
analytics platform for moocs. NIPS 2013, Education Workshop.

Dernoncourt, F., Veeramachaneni, K., and O’Reilly, U.-M. (2013c). beatdb: A large
scalewaveform feature repository. In NIPS 2013, Machine Learning for Clinical
Data Analysis and Healthcare Workshop.

Dernoncourt, F., Veeramachaneni, K., Taylor, C., and O’Reilly, U.-M. (2013d). Meth-
ods and tools for analysis of data from moocs: edx 6.002 x case study. Technical
report, Technical Report, MIT.

Dobson, A. J. (2001). An introduction to generalized linear models. CRC press.

Drevo, W. (2014). Delphi: A distributed multi-algorithm, multi-user, self optimizing
machine learning system.

Elkan, C. (2008). Log-linear models and conditional random fields. Tutorial notes at
CIKM, 8.

Färber, F., Cha, S. K., Primsch, J., Bornhövd, C., Sigg, S., and Lehner, W. (2012a).
Sap hana database: data management for modern business applications. ACM
Sigmod Record, 40(4):45–51.

Färber, F., May, N., Lehner, W., Große, P., Müller, I., Rauhe, H., and Dees, J.
(2012b). The sap hana database–an architecture overview. IEEE Data Eng. Bull.,
35(1):28–33.

Fung, B. C., Wang, K., and Yu, P. S. (2007). Anonymizing classification data for
privacy preservation. Knowledge and Data Engineering, IEEE Transactions on,
19(5):711–725.

Gad, H. (2008). Arterial blood pressure. http://faculty.ksu.edu.sa/dr.hayam/
Lectures/Cardiovascular/Arterial%20blood%20pressure.pdf. [Online; ac-
cessed 01-July-2014].

Ghassemi, M. M., Richter, S. E., Eche, I. M., Chen, T. W., Danziger, J., and Celi,
L. A. (2014). A data-driven approach to optimized medication dosing: a focus on
heparin. Intensive care medicine, pages 1–8.

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark,
R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E. (2000). Phys-
iobank, physiotoolkit, and physionet components of a new research resource for
complex physiologic signals. Circulation, 101(23):e215–e220.

110

http://faculty.ksu.edu.sa/dr.hayam/Lectures/Cardiovascular/Arterial%20blood%20pressure.pdf
http://faculty.ksu.edu.sa/dr.hayam/Lectures/Cardiovascular/Arterial%20blood%20pressure.pdf

Gomersall, C. (2014). Functions of monitoring. http://www.aic.cuhk.edu.
hk/web8/haemodynamic%20monitoring%20intro.htm. [Online; accessed 01-July-
2014].

Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD
thesis, The University of Waikato.

Hamid Sheikhzadeh, R. L. B. A. S. C. (2007). . http://medicaldesign.com/
components/making-better-sense-physiological-signals. [Online; accessed
01-July-2014].

Hellerstein, J. M., Ré, C., Schoppmann, F., Wang, D. Z., Fratkin, E., Gorajek, A.,
Ng, K. S., Welton, C., Feng, X., Li, K., et al. (2012). The madlib analytics library:
or mad skills, the sql. Proceedings of the VLDB Endowment, 5(12):1700–1711.

Hemberg, E., Veeramachaneni, K., Dernoncourt, F., Wagy, M., and O’Reilly, U.-M.
(2013a). Efficient training set use for blood pressure prediction in a large scale learn-
ing classifier system. In Proceeding of the fifteenth annual conference companion
on Genetic and evolutionary computation conference companion, pages 1267–1274.
ACM.

Hemberg, E., Veeramachaneni, K., Dernoncourt, F., Wagy, M., and O’Reilly, U.-M.
(2013b). Imprecise selection and fitness approximation in a large-scale evolutionary
rule based system for blood pressure prediction. In Proceeding of the fifteenth
annual conference companion on Genetic and evolutionary computation conference
companion, pages 153–154. ACM.

Hern, A. (2014). Google: 100,000 lives a year lost through fear
of data-mining. http://www.theguardian.com/technology/2014/jun/26/
google-healthcare-data-mining-larry-page. [Online; accessed 01-July-2014].

Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: Open source scientific tools
for Python. http://www.scipy.org. [Online; accessed 01-July-2014].

Kennedy, H. L., Whitlock, J. A., Sprague, M. K., Kennedy, L. J., Buckingham, T. A.,
and Goldberg, R. J. (1985). Long-term follow-up of asymptomatic healthy subjects
with frequent and complex ventricular ectopy. New England Journal of Medicine,
312(4):193–197.

Kim, Y. B., Seo, J., and O’Reilly, U.-M. (2014). Large-scale methodological compari-
son of acute hypotensive episode forecasting using mimic2 physiological waveforms.
In Proceedings of the 2014 IEEE 27th International Symposium on Computer-Based
Medical Systems, pages 319–324. IEEE Computer Society.

Koebler, J. (2014). Canadian insurance companies can legally practice genetic dis-
crimination. http://bit.ly/CanadaGeneDiscrimination. [Online; accessed 18-
July-2014].

Komorowski, M. (2009). A history of storage cost. http://www.mkomo.com/
cost-per-gigabyte. [Online; accessed 01-July-2014].

111

http://www.aic.cuhk.edu.hk/web8/haemodynamic%20monitoring%20intro.htm
http://www.aic.cuhk.edu.hk/web8/haemodynamic%20monitoring%20intro.htm
http://medicaldesign.com/components/making-better-sense-physiological-signals
http://medicaldesign.com/components/making-better-sense-physiological-signals
http://www.theguardian.com/technology/2014/jun/26/google-healthcare-data-mining-larry-page
http://www.theguardian.com/technology/2014/jun/26/google-healthcare-data-mining-larry-page
http://www.scipy.org
http://bit.ly/CanadaGeneDiscrimination
http://www.mkomo.com/cost-per-gigabyte
http://www.mkomo.com/cost-per-gigabyte

Li, C., Zheng, C., and Tai, C. (1995). Detection of ecg characteristic points using
wavelet transforms. Biomedical Engineering, IEEE Transactions on, 42(1):21–28.

Liu, M. and Zhang, D. (2014). Sparsity score: A novel graph-preserving feature
selection method. International Journal of Pattern Recognition and Artificial In-
telligence.

Macambira, E. M. (2002). An application of tabu search heuristic for the maximum
edge-weighted subgraph problem. Annals of Operations Research, 117(1-4):175–
190.

Macambira, E. M. and De Souza, C. C. (2000). The edge-weighted clique problem:
valid inequalities, facets and polyhedral computations. European Journal of Oper-
ational Research, 123(2):346–371.

MacKay, D. (2006). Gaussian processes basics. In Gaussian Processes in Practice
Workshop, Bletchley Park, UK.

Malin, B. and Sweeney, L. (2005). A secure protocol to distribute unlinkable health
data. In AMIA Annual Symposium Proceedings, volume 2005, page 485. American
Medical Informatics Association.

Mann, S. (1997). Smart clothing: The wearable computer and wearcam. Personal
Technologies, 1(1):21–27.

McGhee, B. H. and Bridges, E. J. (2002). Monitoring arterial blood pressure: what
you may not know. Critical Care Nurse, 22(2):60–79.

McKinney, W. (2010). Data structures for statistical computing in python. In Proc.
9th Python Sci. Conf, pages 51–56.

Miller, J. (2011). Mathematicalmonk’s lectures on machine learning. YouTube.

Miller, R. (2014). CitusDB Releases An Open-Source PostgreSQL Tool That Promises
Better Database Performance. http://tcrn.ch/1dR1Q0w. [Online; accessed 01-
July-2014].

Moody, G. B. and Mark, R. G. (1996). A database to support development and
evaluation of intelligent intensive care monitoring. In Computers in Cardiology,
1996, pages 657–660. IEEE.

Moody, G. B., Mark, R. G., and Goldberger, A. L. (2001). Physionet: a web-based
resource for the study of physiologic signals. IEEE Eng Med Biol Mag, 20(3):70–75.

Narayanan, A. and Shmatikov, V. (2009). De-anonymizing social networks. In Secu-
rity and Privacy, 2009 30th IEEE Symposium on, pages 173–187. IEEE.

Neamatullah, I., Douglass, M. M., Li-wei, H. L., Reisner, A., Villarroel, M., Long,
W. J., Szolovits, P., Moody, G. B., Mark, R. G., and Clifford, G. D. (2008). Auto-
mated de-identification of free-text medical records. BMC medical informatics and
decision making, 8(1):32.

112

http://tcrn.ch/1dR1Q0w

Nickson, C. (2014). Arterial line and Pressure Transducer. http://
lifeinthefastlane.com/education/ccc/arterial-line/. [Online; accessed 01-
July-2014].

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. The Journal of Machine Learning Research, 12:2825–
2830.

PhysiologyWeb (2011). Mean Arterial Pressure Calculator. http://www.
physiologyweb.com/calculators/mean_arterial_pressure_calculator.
html. [Online; accessed 01-July-2014].

PhysioNet (2014). What are PhysioBank-compatible (or WFDB-compatible) for-
mats? http://physionet.nlm.nih.gov/faq.shtml#physiobank-formats. [On-
line; accessed 01-July-2014].

Prelcic, N. G., Márquez, O. W., and González, S. (1996). Uvi wave, the ultimate
toolbox for wavelet transforms and filter banks. In Proceedings of the Fourth Bay-
ona Workshop on Intelligent Methods in Signal Processing and Communications,
Bayona, Spain, pages 224–227. Citeseer.

Pullan, W. (2008). Approximating the maximum vertex/edge weighted clique using
local search. Journal of Heuristics, 14(2):117–134.

Slipetskyy, R. (2011). Security issues in openstack. Master’s thesis, Norwegian Uni-
versity of Science and Technology.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization
of machine learning algorithms. In Advances in Neural Information Processing
Systems, pages 2951–2959.

Srejic, U. and Wenker, O. C. (2003). A-line or intra-arterial catheters. Internet
Journal of Health, 3(1).

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M.,
Lau, E., Lin, A., Madden, S., O’Neil, E., et al. (2005). C-store: a column-oriented
dbms. In Proceedings of the 31st international conference on Very large data bases,
pages 553–564. VLDB Endowment.

Sun, J., Reisner, A., and Mark, R. (2006). A signal abnormality index for arterial
blood pressure waveforms. In Computers in Cardiology, 2006, pages 13–16. IEEE.

Swan, M. (2013). The quantified self: Fundamental disruption in big data science
and biological discovery. Big Data, 1(2):85–99.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Auto-weka:
Combined selection and hyperparameter optimization of classification algorithms.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 847–855. ACM.

113

http://lifeinthefastlane.com/education/ccc/arterial-line/
http://lifeinthefastlane.com/education/ccc/arterial-line/
http://www.physiologyweb.com/calculators/mean_arterial_pressure_calculator.html
http://www.physiologyweb.com/calculators/mean_arterial_pressure_calculator.html
http://www.physiologyweb.com/calculators/mean_arterial_pressure_calculator.html
http://physionet.nlm.nih.gov/faq.shtml#physiobank-formats

Tung, J., Eriksson, N., Kiefer, A., Macpherson, J., Naughton, B., Chowdry, A., Do,
C., Hinds, D., Wojcicki, A., and Mountain, J. (2011). Characteristics of an online
consumer genetic research cohort. American Society of Human Genetics.

Unser, M. and Aldroubi, A. (1996). A review of wavelets in biomedical applications.
Proceedings of the IEEE, 84(4):626–638.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: a
structure for efficient numerical computation. Computing in Science & Engineering,
13(2):22–30.

Vaughan, D., Robinson, N., Lucas, N., and Arulkumaran, S. (2011). Handbook of
Obstetric High Dependency Care. John Wiley & Sons.

Veeramachaneni, K., Dernoncourt, F., Taylor, C., Pardos, Z., and OâĂŹReilly, U.-M.
(2013). Moocdb: Developing data standards for mooc data science. In AIED 2013
Workshops Proceedings Volume, page 17. Citeseer.

Waldin, A. (2013a). DCAP: A Distributed Computation Architecture In Python.
http://byterial.blogspot.com/2013/02/dcap-distributed-computation.
html. [Online; accessed 01-July-2014].

Waldin, A. (2013b). Learning blood pressure behavior from large blood pressure
waveform repositories and building predictive models.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learn-
ing. the MIT Press, 2(3):4.

Zheng, L., Sun, Z., Li, J., Zhang, R., Zhang, X., Liu, S., Li, J., Xu, C., Hu, D.,
and Sun, Y. (2008). Pulse pressure and mean arterial pressure in relation to is-
chemic stroke among patients with uncontrolled hypertension in rural areas of china.
Stroke, 39(7):1932–1937.

114

http://byterial.blogspot.com/2013/02/dcap-distributed-computation.html
http://byterial.blogspot.com/2013/02/dcap-distributed-computation.html

Appendix A

Reading CSV files in Python: a

benchmark

A large quantity of BeatDB data is stored as CSV files. It is interesting to notice the

time it takes to load a CSV file into an array can tremendously vary depending on

the library that is used and the way the CSV file is stored. We present in this section

a benchmark of Python library to read a CSV file. Since data analysis often relies

on this type of storage, we believe it is of general interest to take a great care of this

kind of operation as it might influence of lot the efficiency of the system.

The results of the benchmark are presented in Table A.1. We compare the following

libraries:

• Python’s native CSV module: introduced with Python 2.3 (import csv), it

provides an easy way to read a CSV file line by line either to print or populate

a Python list.

• NumPy (Van Der Walt et al., 2011): a widely used, open-source package for

scientific computing with Python, one of the main building block of Scipy (Jones

et al., 2001) and often refer as an open-source alternative to Matlab as it provides

a fairly similar syntax.

115

• Pandas (McKinney, 2010): a more recent, open-source package that focuses on

high-performance, easy-to-use data structures.

Python’s native CSV module performs pretty well, while NumPy’s loadtxt() is much

slower, which is not surprising as the function provides many more features. Pandas’

read_csv() is impressively faster than the first two.

The main reason why loading a CSV file into an array is slow is that the parser

has to go over the text file and convert it into an array structure, and possibly

performing some casting at the same time. In order to avoid this parsing step, we

can alternatively store the arrays not as text but binary files. In the Python jargon,

this operation is called pickling, whereby a Python object is converted into a byte

stream. Unpickling is the inverse operation, whereby a byte stream is converted back

into an object. Pickling is also known as serialization (most common term outside

the Python world), marshalling, or flattening.

As a result, we use NumPy’s serialization function save() to convert our CSV files

to binary files. As shown in the table A.1, NumPy’s deserialization function load()

is order of magnitude faster than all previous functions we tried to read CSV files.

We note that using the combination of tofile() and fromfile() for data storage is even

quicker, but the binary files generated are are not platform independent (e.g. no byte-

order or data-type information is saved, while the binary files generated by save() are

platform independent.

The source code of the benchmark is available online1. We lacked the time to inves-

tigate HDF5-based Python libraries such as PyTables (Alted and Fernández-Alonso,

2003) and h5py but they look promising.

1http://softwarerecs.stackexchange.com/a/7510/903

116

http://softwarerecs.stackexchange.com/a/7510/903

Computer 1 Computer 2
OS Windows 7 SP1 x64 Ubuntu 12.04 x64 LTE

Python 2.7.6 x64 2.7.3
NumPy 1.7.1 1.8.1
Pandas 0.13.1 0.14.0

Python’s CSV reader 1.3293 1.788
Python’s CSV reader list 1.0714 1.4965

Python’s CSV reader float cast 2.6241 2.849
NumPy’s loadtxt() 13.3207 7.498
Pandas’s read_csv() 0.3638 0.3355
NumPy’s fromfile() 0.0122 0.0105
NumPy’s load() 0.0244 0.0135

Table A.1: Benchmark of different Python function to reading CSV files. Each func-
tion was used to read a CSV file containing 1 column with 750,000 lines and a CSV file
containing 1 column with 750,000 lines. The reported values are expressed in seconds
and is the sum of the duration to read both CSV files. We averaged the duration
over 20 runs. We don’t report standard deviations for the sake of readability as they
were very small (less than 10% of the average)

117

118

Appendix B

On privacy and anonymization of

personal data

It is worth noting that, while people are increasingly embracing data-recording tech-

nologies and services, many concerns over data privacy are raised. For instance, if

health records of individuals were made public, health insurances could take advan-

tage of that information to discriminate among their clients (as reported by Koebler

(2014), insurance companies can legally practice genetic discrimination in Canada),

banks might adjust their personal loan rates, employers may eliminate some candi-

dates based on their medical conditions, and so on. However, on the other side, as

exemplified by Hern (2014) who reports that the search firm’s CEO and co-founder,

Larry Page, estimates 100,000 lives could be saved next year if mining of healthcare

data was acceptable, access to data is the key to improve people’s lives.

The debate privacy vs. life quality is beyond the scope of this thesis but is good

to keep in mind when making trade-offs during the anonymization phase of a data

set, whether it pertains to healthcare records, educational performances, financial

information and so on. It is indeed a trade-off as the more accurate a data set is,

the more likely it is to contains interesting information, while overly anonymizing

data set might remove crucial information. For example, the data set MIMIC, which

119

contains data on patients in the ICU and which we will use later on in this thesis, was

anonymized by changing the dates the patients’ arrival to the ICU. This removal of

information could be deleterious for instance if we were trying to analyze what time

of the year is the busiest for the medical personnel in ICUs.

A lot of work has been done to try to create some protocols to anonymize data

sets, such as Malin and Sweeney (2005) for health data or Fung et al. (2007) for

classification data, and complementarily a lot of work has been done to try to de-

anonymize data sets such as Narayanan and Shmatikov (2009), who entered the $1-

Million Netflix Prize contest (Bennett and Lanning, 2007; Bell and Koren, 2007) and

successfully applied their de-anonymization techniques to identify Netflix data for a

number of specific members.

120

Appendix C

Column-oriented vs. row-oriented

database

In this section we discuss our choice to use flat files instead of using a relational

database management system (RDBMS), which might sound surprising at first.

Figure C-1 shows how we could have stored BeatDB in a traditional RDBMS. The

database is centered around records. Each record contains many signal samples for

a given signal type. We detect beats based on the signal samples, which we mark as

valid, invalid or jump. Then, we compute different features for each beat. Lastly, we

scan for the presence of some medical condition, as we will see in the next chapter.

Instead, as we have previously seen, for each signal type, beatDB stores the samples

in one file for each record, the beat validity data in one file for each record, and we

store the feature values in one file for each record and for each feature.

The reason behind this segmentation is that all data queries are at record-level and

feature-level. For ABP samples and beat validity, if we had used a traditional row-

oriented RDBMS, we could have set a clustered index on the record ID in the beats

and signal-samples tables. Figure C-2 shows the point of using a clustered index:

when defining such an index, the physical data records on the disk follow the index

sort order. This data organization allows to drastically reduce the number of disk

121

ABP raw file

beats

beat_id INT

waveform_record_id INT

signal_type_id INT

signal_sample_id_start INT

signal_sample_id_end INT

beat_validity INT

Indexes

Feature files

waveform_features

beat_feature_id INT

beat_id INT

feature_id INT

baet_feature_value FLOAT

Indexes

features

feature_id INT

feature_name VARCHAR(45)

feature_description TEXT

Indexes

Scanner output

waveforms_condi…

patients_conditions_id INT

condition_id INT

patients_conditions_start INT

patients_conditions_end INT

waveform_record_id INT

Indexes

conditions

condition_id INT

condition_name VARCHAR(100)

condition_parameters VARCHAR(200)

Indexes

Beat validation

signal_types

signal_type_id INT

signal_type_name VARCHAR(45)

Indexes

signal_samples

signal_sample_id INT

signal_type_id INT

waveform_id INT

signal_waveform_value INT

Indexes

patients

patient_id INT

age INT

gender CHAR

clinical_patient_id INT

Indexes

waveform_records

waveform_record_id INT

patient_id INT

Indexes

beats

beat_id INT

waveform_record_id INT

signal_type_id INT

signal_sample_id_start INT

signal_sample_id_end INT

beat_validity INT

Indexes

waveform_features

beat_feature_id INT

beat_id INT

feature_id INT

baet_feature_value FLOAT

Indexes

features

feature_id INT

feature_name VARCHAR(45)

feature_description TEXT

Indexes

waveforms_condi…

patients_conditions_id INT

condition_id INT

patients_conditions_start INT

patients_conditions_end INT

waveform_record_id INT

Indexes

conditions

condition_id INT

condition_name VARCHAR(100)

condition_parameters VARCHAR(200)

Indexes

signal_types

signal_type_id INT

signal_type_name VARCHAR(45)

Indexes

signal_samples

signal_sample_id INT

signal_type_id INT

waveform_id INT

signal_waveform_value INT

Indexes

Figure C-1: RDBMS equivalent of the flat file design. Each layer indicates to which
flat files each table corresponds to.

seeks when one value or a range of values of the clustered index needs to be retrieved.

For example, if we set a clustered index on the record ID column in the beats table,

retrieving all beats for one record would require only a few amount of disk seeks.

Setting a clustered index on the record ID in the beats and signal-samples tables

would yield a read speed almost as fast as directly reading data from a flat file, but

we did not have any use for any RDBMS feature so we stuck to flat files. Regarding

the storage of the feature values, setting a clustered index in the RDBMS would not

have been enough, as sometimes we want to retrieve a few features for all records, or

all features for a few records, and there can only by one clustered index per table.

Our way of storing feature values in flat files corresponds to a column-oriented

122

Figure C-2: Clustered vs. non-clustered index

database, since the columns (here the features) are stored in separate files. A column-

oriented database stores the data of a table column by column on the disk, while a

row-oriented database stores the data of a table row by row.

There are two main advantages of using a column-oriented database in comparison

with a row-oriented database. The first advantage relates to the amount of data one’s

need to read in case we perform an operation on just a few features. Consider a simple

query:

SELECT correlation(feature2, feature5)

FROM records

A traditional executor would read the entire table (i.e. all the features) as in Figure

C-3. Instead, using our column-based approach we just have to read the columns

which are interested in, as Figure C-4 illustrates.

The second advantage, which is also very important in our case since we have a large

data set, is that column-based storage allows better compression, since the data in

one specific column is indeed homogeneous than across all the columns.

The main drawback of a column-oriented approach is that manipulating (lookup,

123

Figure C-3: Execution of the query when the data is stored in a row-based fashion.
All columns must be read, because the data is stored row by row on the disk. An
An alternative schema would be add the feature number as a column, and have the
feature value as another column, as in Figure C-1 but this solution comes with its
own drawbacks too.

update or delete) an entire given row is inefficient. However the situation should

occur rarely in our case, since BeatDB is a database for analytics (“warehousing”),

which means most operations are read-only, rarely read many attributes in the same

table and writes are only appends.

Some RDMS offer a column-oriented storage engine option. For example, PostgreSQL

has natively no option to store tables in a column-based fashion, but Greenplum has

created a closed-source one (DBMS2, 2009). Interestingly, Greenplum is also behind

the open-source library for scalable in-database analytics, MADlib (Hellerstein et al.,

2012), which is no coincidence. More recently, CitusDB, a startup working on high-

124

Figure C-4: Execution of the query when the data is stored in a column-based fashion.

speed, analytic database, released their own open-source columnar store extension for

PostgreSQL, CSTORE (Miller, 2014). Google’s system for large scale machine learn-

ing Sibyl also uses column-oriented data format (Chandra et al., 2010). This trend

reflects the growing interest around column-oriented storage for large-scale analytics.

Stonebraker et al. (2005) further discuss the advantages of column-oriented DBMS.

We chose eventually not to use an RDBMS with column-oriented storage for the sake

of simplicity, and instead used flat files. Appendix A presents how we optimized

reading from those flat files.

125

126

Appendix D

Machine learning techniques

D.1 Logistic regression

To predict the AHE events, we use logistic regression (aka. logit regression) which,

despite its name, is a classification model, meaning that it is used to predict a some

discrete variable (classification), unlike a regression model, which predicts a continu-

ous variable (regression). The predicted variable is typically categorical, which means

that its values (named classes or categories) have no intrinsic ordering, unlike ordinal

variables, which do have an ordering. The predicted variable is also named dependent

variable, output variable or target variable, and is commonly denoted y.

To make a prediction, the logistic regression take as input some features (aka. inde-

pendent variables). The list of the feature values is denoted x. If we have d features,

then x ∈ Rd, assuming that features are real-valued, which is the case most of the

time.

As logistic regression is a supervised algorithm, we fit the model using a training

set that we denote
{(
x(i), y(i)

)
, i ∈ {1, . . . , n}

}
, where each pair

(
x(i), y(i)

)
is the ith

training example. The model we fit is the function h : X → Y , where h(x) = g(θTx) =

1

1+e−θT x
. As we can see, the model is fully parameterized by θ, which is basically a

weight vector that is applied to the feature vector through a linear combination. The

127

function g is the logistic function (hence the name logistic regression), which is a

special case of the more general sigmoid function, even though the two are often

confused.

By construction, y is between 0 and 1. We can interpret g in a probabilistic way:

P (y = 1) = h(x) and P (y = 0) = 1 − h(x). The class affectation will be decided

based on a threshold: for example, we can decide that if P (y = 1) ≥ 0.5 then we

consider that the class of y is 1. We will see the impact of the choice of the threshold

in the next section.

In order to learn the model parameters θ using the training set, we must define a

loss function (aka. cost function): Loss(θ) =
∑n

i=1

(
subcost

(
h(x(i))− y(i)

))
. Since

we need to find the global minimum of the Loss function, we choose subcost in such

a way that Loss is convex with respect to θ. If we use the mean squared error as

the subcost, like in linear regression using ordinary least squares (aka. linear least

squares), then Loss would not be convex (because function g is the logistic function).

Instead, we chose subcost(x, y) = y log(h(x)) + (1− y) log(1− h(x)), which results in

a Loss that is convex, and subsequently straightforward to minimize using gradient

descent or some more advanced optimization algorithm such as conjugate gradient or

BFGS (unlike linear regression, there is no closed-form expression for the optimal θ).

This optimization can be interpreted probabilistically as a maximum log likelihood

estimation because it finds argmaxθ (p(y|x)).

Interestingly, logistic regression can be expressed in a more general framework: gen-

eralized linear model regression (Dobson, 2001). It can also be seen as a special case

of a log-linear model (Elkan, 2008) and of a conditional random field.

D.2 Metrics

In order to assess the quality of our model, we choose the area under the curve of

the receiver operating characteristic (AUROC), which we can use since the logistic

128

regression’s outcome can be regarded as a probability as we have seen in the previous

section.

Before presenting the ROC, the concept of confusion matrix must be understood.

When we make a binary prediction, that can be 4 types of errors:

• We predict 0 while we should have the class is actually 0: this is called a true

negative, i.e. we correctly predict that the class is negative (0). For example,

an antivirus did not detect a harmless file as a virus .

• We predict 0 while we should have the class is actually 1: this is called a false

negative, i.e. we incorrectly predict that the class is negative (0). For example,

an antivirus failed to detect a virus.

• We predict 1 while we should have the class is actually 0: this is called a false

positive, i.e. we incorrectly predict that the class is positive (1). For example,

an antivirus considered a harmless file to be a virus.

• We predict 1 while we should have the class is actually 1: this is called a true

positive, i.e. we correctly predict that the class is positive (1). For example, an

antivirus rightfully detected a virus.

To be a confusion matrix counts, we go over all the predictions made by the model,

and establish account for each of those 4 types of errors, as Table D.1 shows.

10 true positives (TP) 2 false negatives (FN)
3 false positives (FP) 35 true negatives (TN)

Table D.1: Example of a confusion matrix. Among the 50 data points that are
classified in this example, 45 are correctly classified and the 5 are misclassified.

Since to compare two different models it is often more convenient to have a single

metric rather than several ones, we compute two metrics from the confusion matrix,

which we will later combine into one:

• False positive rate (FPR), aka. fall-out, hit rate and recall, which is defined as
FP

FP+TN
. Intuitively this metric corresponds to the proportion of negative data

129

points that are mistakenly considered as positive, with respect to all negative

data points. In other words, the higher FPR, the more negative data points we

will missclassified.

• True positive rate (TPR), aka. sensitivity, which is defined as TP
TP+FN

. Intu-

itively this metric corresponds to the proportion of positive data points that

are correctly considered as positive, with respect to all positive data points. In

other words, the higher TPR, the fewer positive data points we will miss.

To combine the FPR and the TPR into one single metric, we first compute the two

former metrics with many different threshold (for example 0.00; 0.01, 0.02, . . . , 1.00)

for the logistic regression, then plot them on a single graph, with the FPR values on

the abscissa and the TPR values on the ordinate. The resulting curve is called ROC

curve, and the metric we consider is the AUC of this curve, which we call AUROC.

Figure D-1 shows the AUROC graphically.

As the performance of the logistic regression is influenced by the choice of the training

set, when assessing the performance of the logistic regression with a given set of

features and other problem parameters, we will perform a 5-fold cross-validation and

report the average AUROC obtained for each fold.

In 5-fold cross-validation we divide the data set into 5 chunks of equal size. We take

4 chunks as the training set, and we use the last chunk as the testing set to compute

the AUROC. We perform this operation 5 times. This gives us 5 AUROCs, which

we average to obtain a robust estimate of the logistic regression performance. Figure

D-2 illustrates the process of averaging the 5 AUROCs.

It is worth noting that when dividing the data set in two different chunks we must

ensure that the training data is independent from the testing data. One common

mistake is to divide one patient’s data into training and testing set, which violates this

independence principle. For example if we split the blood pressure signal values of a

patient, put the first half in the training data, and the second half in the testing data:

since the second half partly depends on the first half, this breaks the independent

130

Figure D-1: Receiver operating characteristic (ROC) curve. The blue area cor-
responds to the Area Under the curve of the Receiver Operating Characteristic
(AUROC). The dashed line in the diagonal we present the ROC curve of a ran-
dom predictor: it has an AUROC of 0.5. The random predictor is commonly used as
a baseline to see whether the model is useful.

condition. As a result, when dividing the data set into five different chunk, the data

division is made on a patient-level basis.

131

Figure D-2: ROC curves with 5-fold cross-validation: each cross-validation yields a
ROC curve, hence the presence of 5 ROC curves. The grey dash line represents the
random predictor, which we use as a baseline to see whether the model is useful as
we have seen in Figure D-1. The bold dash line is the average of the 5 ROCs.

132

Appendix E

Gaussian process regression

This section was written based on Miller (2011) and Williams and Rasmussen (2006).

E.1 Gaussian process definition

The reference book on Gaussian Process for machine learning (Williams and Ras-

mussen, 2006) gives the following definition:

A Gaussian process is a generalization of the Gaussian probability distribution. Whereas

a probability distribution describes random variables which are scalars or vectors (for

multivariate distributions), a stochastic process governs the properties of functions.

Leaving mathematical sophistication aside, one can loosely think of a function as a

very long vector, each entry in the vector specifying the function value f(x) at a par-

ticular input x.

A Gaussian process is a particular case of a stochastic process (aka. random process,

which simply designates a collection of random variables), which is often used to

represent the evolution of some random value, or system, over time.

133

E.2 The mean vector and the variance-covariance

matrix

A Gaussian distribution is completely specified by its mean (µ) and variance (σ2).

Its probability density function is:

f(x;µ, σ) =
1

σ
√
2π
e−

(x−µ)2

2σ2

As a result, a Gaussian process is completely specified by its mean function and co-

variance function. We can discretize it by saying that a discrete Gaussian process is

completely specified by a mean vector and a co-variance matrix. In the case of the

Gaussian process regression we’ll focus on discrete Gaussian processes, where each

Gaussian distribution represents an output in the training, validation or test set.

E.3 The intuition behind a covariance matrix

The covariance matrix expresses how tightly related random variables are between

each other. As we can see in Figure E-1, which shows a probabilistic graphical model,

the farther away random variables are from each other (e.g. y1 and y5 are far from

each other), the lower is their covariance. The probabilistic graphical model shown in

the figure also illustrates that the partial correlation in the inverse covariance matrix

is equal to zero if and only if X is conditionally independent from Y given Z, with the

assumption that all involved variables are multivariate Gaussian (the property does

not hold in the general case).

E.4 The regression problem

The data is the following:

134

Figure E-1: Covariance matrix. The yi are Gaussian random variables. Source:
MacKay (2006)

• Training set inputs: xtrain = (x1, x2, ..., xn)

• Training set outputs: ytrain = (y1, y2, ..., yn)

• Test set inputs: xtest = (xn+1, xn+2, ..., xm)

Note that:

• xi ∈ RD where D is the number of dimensions of the each input, that is to say

the number of features each input has. This means that xtrain is a matrix of

dimension D × n.

• yi ∈ R, i.e. the targets are real-valued. This means that ytrain is a vector of n

elements.

• We have n inputs in the training set and (m− n+ 1) in the test set.

The goal of the regression is to find P (ytest|ytrain, xtrain, xtest).

Since all random variables in X and Y are Gaussian, we have a closed-form expression

for the distribution of the outputs that we were trying to find:

P (ytest|ytrain, xtrain, xtest) ∼ N (µytest , σ
2
ytest)

135

where:

• µytest = µtest +Ktest−train(Ktrain−train)
−1(ytrain − µtrain)

• σ2
ytest = Ktest−test −Ktest−train(Ktrain−train)

−1Ktrain−test

If we assume that the observed outputs ytrain have some noise following a Gaussian

distribution N (0, σ2
noise), then the two above formulas would be:

• µytest = µtest +Ktest−train(Ktrain−train + σ2
noiseIn)

−1(ytrain − µtrain)

• σ2
ytest = (Ktest−test+σ

2
noiseIm−n+1)−Ktest−train(Ktrain−train+σ

2
noiseIn)

−1Ktrain−test

We have defined so far all the variables used in these formulas to compute the mean

vector and the covariance matrix of P (ytest|ytrain, xtrain, xtest) except K. K is the

covariance matrix of (xtrain, xtest), and we shall see in the next section how to compute

it.

E.5 Computing the covariance matrix

In the context of Gaussian process for prediction, the covariance matrix can be seen

as the distance matrix between all the inputs (training and test sets put together).

The choice of the covariance function, i.e. the function that we use to compute the

covariance between two inputs, will deeply impact our predictions. The covariance

function is typically denoted by k, as it is also called kernel.

We will investigate 4 different kernels:

• Linear kernel: k(x, y) = xTy, the regression will be linear, as the kernel indi-

cates.

• Cubic kernel: k(x, y) = 3×
((
xTy

)2
+ 2

(
xTy

)3).
• Absolute exponential kernel (aka. Ornstein-Uhlenbeck): k(x, y) = e|x−y|. The

Ornstein-Uhlenbeck process is a stationary Gaussian process.

136

• Squared exponential kernel: k(x, y) = e−0.5|x−y|
2 , the regression will be non-

linear (it can be shown to be mathematically equivalent to the Bayesian Linear

Regression with an infinite number of basis functions).

The only constraint when building a kernel is that the resulting covariance matrix K

must be positive definite.

K =

k(x1, x1) · · · k(x1, xn) k(x1, xn+1) · · · k(x1, xm)

...
...

k(xn, x1) · · · k(xn, xn) k(xn, xn+1) · · · k(xn, xm)

k(xn+1, x1) · · · k(xn+1, xn) k(xn+1, xn+1) · · · k(xn+1, xm)

...
...

k(xm, x1) · · · k(xm, xn) k(xm, xn+1) · · · k(xm, xm)





xtrain

xtest

xtrain xtest

K =

 Ktrain−train Ktrain−test

Ktest−train Ktest−test



E.6 Computational complexity

As previously mentioned, we have a closed-form expression for the distribution of

the outputs, which is a Gaussian distribution. The computational complexity of the

Gaussian process regression solely lies in the calculation of the mean µytest and the

variance σ2
ytest of the Gaussian distribution. The formulas for each of those two values

involve matrix operations, where matrix size is in the order of m, where as a reminder

m is the sum of the number of points in the training and test sets.

The mean and variance formulas involve:

• matrix subtractions, the cost of which is O(m2) by subtracting element one by

one;

137

• matrix inversions, the cost of which is typically O(m3) (e.g. using the Gauss-

Jordan elimination) and can be speed-up using the Strassen algorithm (O(m2.807)),

Coppersmith-Winograd algorithm (O(m2.376)) or Williams algorithm (O(m2.373));

• matrix multiplications, the cost of which is O(m3) and can be speed-up using

the same algorithm as for the matrix;

As a result, the computational complexity of a Gaussian process regression is O(m3).

This limits the methods to the situations where the number of data points is around

10000 or fewer.

138

Appendix F

Wavelet library

F.1 Choice of library

Our requirements for the wavelet library are the ability to:

• compute a continuous wavelet transform;

• perform computation in an efficient way, i.e. the implementation should be

reasonably fast;

• specify the scale as well as the time shift;

• offer many different wavelet transforms.

We investigated the following wavelet libraries:

• PyWavelets (Discrete Wavelet Transform in Python)1: as its name indicates, it

only computes discrete wavelet transforms.

• SciPy ’s scipy.signal.cwt function (Python)2: it only has 1 or 2 continuous

wavelet transforms and the documentation is poor. See 3 for more details.

1https://pypi.python.org/pypi/PyWavelets/
2http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.cwt.

html
3http://stackoverflow.com/q/23730383/395857

139

https://pypi.python.org/pypi/PyWavelets/
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.cwt.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.cwt.html
http://stackoverflow.com/q/23730383/395857

• Uvi Wave 300 (MATLAB) (Prelcic et al., 1996): it is not maintained anymore,

the official website is no more available, the library does not run on new version

of Matlab unless modified and it offers only a few continuous wavelet transforms.

• Wavelet Image Compression Construction Kit4: the last release was in 1997,

and it focuses on image processing.

• Class Library for Wavelet Transforms on Images5: as its name indicates, it

focuses on image processing.

• Wavelet1d6: it only computes discrete wavelet transforms.

• GNU Scientific Library (GSL)7: it only computes discrete wavelet transforms.

• Nwave8: it only computes discrete wavelet transforms.

• Matlab’s Wavelet Toolbox9: it is a comprehensive toolbox that can compute

both discrete and continuous wavelet transforms. It offers 87 different wavelet

transforms10 and a pretty fast implementation.

We eventually selected Matlab’s Wavelet Toolbox.

F.2 Benchmark of library

Figure F-1 and F-2 present a benchmark of the running time of cwt(), which is the

function to compute the continuous wavelet transform in the toolbox, depending

on which transform we choose. It is interesting to see the impact of the choice

of the wavelet transform impact the speed of cwt(). We run the benchmark with

the -singleCompThread option when starting MATLAB to force it to use a single

computational thread. cwt() is passed a 1,000,000-sample random signal and asked

4http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html
5http://herbert.the-little-red-haired-girl.org/en/software/wavelet/
6https://code.google.com/p/wavelet1d/
7http://www.gnu.org/software/gsl/
8https://code.google.com/p/nwave/
9http://www.mathworks.com/products/wavelet/

10http://stackoverflow.com/a/24399951/395857

140

http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html
http://herbert.the-little-red-haired-girl.org/en/software/wavelet/
https://code.google.com/p/wavelet1d/
http://www.gnu.org/software/gsl/
https://code.google.com/p/nwave/
http://www.mathworks.com/products/wavelet/
http://stackoverflow.com/a/24399951/395857

to compute scales 1 to 10. The CPU is an i7-3610QM, with Matlab R2014a running

on Windows 7 SP1 x64 Ultimate. All durations are averaged over 10 runs.

141

0 5 10 15 20 25 30 35

dmey

db9

db8

db7

db6

db5

db4

db3

db2

db10

db1

coif5

coif4

coif3

coif2

coif1

cmor1-1.5

cmor1-1

cmor1-1

cmor1-0.5

cmor1-0.5

cmor1-0.1

cgau5

cgau4

cgau3

cgau2

cgau1

bior6.8

bior5.5

bior4.4

bior3.9

bior3.7

bior3.5

bior3.3

bior3.1

bior2.8

bior2.6

bior2.4

bior2.2

bior1.5

bior1.3

bior1.1

Run time in seconds

Figure F-1: Matlab’s Wavelet Toolbox: cwt() benchmark. The choice of the wavelet
transform has a high impact on the computation time.

142

0 5 10 15 20 25 30 35

sym8

sym7

sym6

sym5

sym4

sym3

sym2

shan2-3

shan1-1.5

shan1-1

shan1-0.5

shan1-0.1

rbio6.8

rbio5.5

rbio4.4

rbio3.9

rbio3.7

rbio3.5

rbio3.3

rbio3.1

rbio2.8

rbio2.6

rbio2.4

rbio2.2

rbio1.5

rbio1.3

rbio1.1

morl

meyr

mexh

haar

gaus8

gaus7

gaus6

gaus5

gaus4

gaus3

gaus2

gaus1

fbsp2-1-1

fbsp2-1-0.5

fbsp2-1-0.1

fbsp1-1-1.5

fbsp1-1-1

fbsp1-1-0.5

Run time in seconds

Figure F-2: Matlab’s Wavelet Toolbox: cwt() benchmark. The choice of the wavelet
transform has a high impact on the computation time.

143

144

Appendix G

Least correlated subset of wavelets

from a correlation matrix

Due to time constraint we will not try all the wavelets as a features but just a few

ones. In order to try to maximize the likelihood to find a good wavelet, i.e. a wavelet

that when used as a feature help predict the AHE events, we want to select a subset

of wavelets that is as least correlated as possible.

To put the problem more for formally let A be a correlation matrix, like the ones

presented in Figures 5-4 and 5-5. In our case, the correlation matrix A is of dimension

65 × 65 since we have 65 different non-complex wavelets. A is the average of the

correlation of the 65 wavelets across the first 10 scales on a 1,000,000-sample random

signal.

Among these 65 wavelets, we would like to find a subset of wavelets, say 10 wavelets,

whose correlation matrix contains as “little correlation” as possible. Quantifying how

much “more correlation” a correlation matrix contains compared to another corre-

lation matrix B requires to define a metric to quantify the level of correlation of a

correlation matrix. One simple such metric is to take the mean of the absolute values

of the non-diagonal elements of the correlation matrix, i.e. 2
n2−n

∑
1≤i<j≤n |xi,j| (we

use the symmetry of the correlation matrix in this formula). With this metric the pro-

145

gram of finding the subset of wavelets with the least correlation becomes equivalent

to the maximum edge weight clique problem (MEWCP).

A MEWCP is expressed as follows: we have an undirected weighted graph G = (V ;E)

and we want to find the clique C of size at most n whose sum of the weights of the

edges in C is the largest possible. As a reminder, a clique is a complete subgraph in

a graph, i.e., subgraph where each pair of node of elements is connected by an edge.

Figure G-1 shows an example of a clique. The MEWCP is NP-hard (Macambira and

De Souza, 2000).

To see why our problem of finding the least correlated subset of wavelets of size n

from a correlation matrix is equivalent to the MEWCP, let B be a matrix of the

same dimension as A, such as ∀(i, j), bi,j = − |ai,j|. We consider B as the symmetric

weighted adjacency matrix that expresses the undirected graph G = (V ;E) with

weights associated to the edges in E corresponding to the values of B. Finding the

clique C of size at most n whose sum of the weights of the edges in C is the largest

possible yields the least correlated subset.

There exist some approximation algorithms for the MEWCP (Pullan, 2008; Macam-

bira, 2002), which we can use to obtain a reasonably good subset of wavelets to use.

Another way to make the problem easier would be to find another metric to quantify

the level of correlation of a correlation matrix, such as the determinant1 .

Figure G-1: Maximum clique in a graph

1To continue the discussion on the least correlated subset of random variables from a correlation
matrix: http://stats.stackexchange.com/q/110426/12359

146

http://stats.stackexchange.com/q/110426/12359

For the rest of this report, we choose 3 wavelets with low pair-wise correlation: Symlet-

2, Gaussian-2 and Haar. There exist more advanced feature selection methods, which

can be divided into filter-type, wrapper-type and embedded methods (Cornuéjols,

2005; Liu and Zhang, 2014; Dernoncourt et al., 2014), but we do not use them in this

work.

For the rest of this thesis, we choose 3 wavelets with low pair-wise correlation: Symlet-

2, Gaussian-2 and Haar. There exist more advanced feature selection methods, which

can be divided into filter-type, wrapper-type and embedded methods, but we do not

use them in this work.

147

148

Appendix H

Software design

The BeatDB code can be found on the GitHub repository: https://github.com/

Franck-Dernoncourt/beatdb.

BeatDB is divided into three sets of tools:

• tools to populate BeatDB,

• tools to run workers,

• tools to analyze the results.

H.1 Populating BeatDB

H.1.1 Beat onset detection

The files mentioned in this section can be found in the folder /beat_detection.

The first step in populating BeatDB is to detect the beat onsets in the signal data

of interest. We used WFDB1 to detect the beat onset of MIMIC’s ABP data. The

latest version of WFDB, 10.5.172 at that time, had some issues with our Ubuntu

1http://www.physionet.org/physiotools/wfdb-linux-quick-start.shtml
2http://www.physionet.org/physiotools/archives/wfdb-10.5/wfdb-10.5.17.tar.gz

149

https://github.com/Franck-Dernoncourt/beatdb
https://github.com/Franck-Dernoncourt/beatdb
http://www.physionet.org/physiotools/wfdb-linux-quick-start.shtml
http://www.physionet.org/physiotools/archives/wfdb-10.5/wfdb-10.5.17.tar.gz

12.04 32-bit machine, so we used WFDB 10.5.93 instead.

We used the following step to install WFDB 10.5.9 on a Ubuntu 12.04 32-bit machine:

wget http://www.physionet.org/physiotools/archives/wfdb-10.5/wfdb-10.5.9.tar.gz

tar xfvz wfdb-10.5.9.tar.gz

cd wfdb-10.5.9

cd conf

emacs linux.def

edit at around line 30: (be careful to use this quote ‘, not ’):

LC = ‘curl-config --cflags‘

LL = ‘curl-config --libs‘

save the file

cd ..

sudo ./configure

sudo make install

sudo make check

Linking

you need to create a link libwfdb.so.10 that points to libwfdb.so:

sudo find / -iname libwfdb.so

cd /usr/lib

sudo ln -s /usr/lib64/libwfdb.so libwfdb.so.10

We do not need to compile wfdb-swig, we can actually use the libwfdbjava.so provided

by wfdb-swig-matlab4 .

Once WFDB is installed and libwfdbjava.so downloaded, we can run the Java program

that extract the beat onsets:

3http://www.physionet.org/physiotools/archives/wfdb-10.5/wfdb-10.5.9.tar.gz
4http://www.physionet.org/physiotools/matlab/wfdb-swig-matlab/

150

http://www.physionet.org/physiotools/archives/wfdb-10.5/wfdb-10.5.9.tar.gz
http://www.physionet.org/physiotools/matlab/wfdb-swig-matlab/

javac -cp . abpbeatextraction/ABPBeatExtractionUnmatchedFull.java

java -classpath . abpbeatextraction.ABPBeatExtractionUnmatchedFull

javac -cp . abpbeatextraction/ABPextractMimic2v3.java

java -classpath . abpbeatextraction.ABPextractMimic2v3

H.1.2 Signal data transfer

The files in this section can be found in the folder /beat_transfer.

To retrieve the ABP data from MIMIC, we use the script Mimic2v3ABP.m, which

can be run with the following command:

sudo apt-get -y install openjdk-6-jre openjdk-6-jdk

wget http://physionet.org/physiotools/matlab/wfdb-swig-matlab/install.sh

sudo bash install.sh -p http://physionet.org/physiotools/matlab/wfdb-swig-matlab

matlab -r Mimic2v3ABP

H.1.3 Beat validation

The files to perform section beat validation can be found in the folder /beat_validation.

beat_validation.py contains all the rules to decide the validity of a beat.

H.1.4 Condition scanner

The files to perform section beat validation can be found in the folder /condition_scanner.

The main file is condition_scanner.py.

H.1.5 Feature extraction

The first 14 features we use in this thesis were computed using the dcap framework.

All the code can be found in the folder /feature_extraction.

151

The wavelet features were extracted using Matlab’s Wavelet Toolbox. In order to

make the extraction of wavelet more efficient we designed a specific code for it which

can be found in the folder /feature_extraction/wavelet.

H.2 Worker logic

The worker logic is coded in /worker_logic/main_wrapper.py, which follows the al-

gorithm described in Section 2.10. main_wrapper.py can be configured to do a grid

search for a Gaussian process search.

OpenStack scripts to manage workers (adding new instances, cleaning broken in-

stances, etc.) can be found in the folder /worker_logic/openstack. The interaction

with OpenStack is done either by Eucalyptus euca2ools5 or OpenStack command-line

client nova6. Euca2ools can be used to interact with Amazon Web Services (AWS)

as well, while nova is more specific to OpenStack. OpenStack indeed supports two

APIS: the Amazon EC2 API (euca2ools) and the OpenStack API (novaclient).

H.3 Results analysis

The results analysis scripts are located in the folder /result_analysis. They output

various graphs based on the results obtained by the worker logic. They can also

simulate a Gaussian process search or a random search.

H.4 Benchmarks

The code for the CSV benchmark in Python can be found at http://softwarerecs.

stackexchange.com/a/7510/903.

5https://github.com/eucalyptus/euca2ools
6http://docs.openstack.org/user-guide/content/install_clients.html

152

http://softwarerecs.stackexchange.com/a/7510/903
http://softwarerecs.stackexchange.com/a/7510/903
https://github.com/eucalyptus/euca2ools
http://docs.openstack.org/user-guide/content/install_clients.html

The code for the wavelet benchmark in the Matlab Wavelet Toolbox can be found at

http://stackoverflow.com/a/24398613/395857.

H.5 Code statistics

The code was written in Python, Java, Matlab, Bourne Shell and SQL. Figure H-1

shows the programming language breakdown.

Python
64%

Java
19%

Matlab
14%

Bourne Shell
3%

Figure H-1: Source lines of code (SLOC) per language. We used Python 2.7 and
Matlab 2014a x64. In total there are around 10K SLOC (not counting comments and
blank lines).

153

http://stackoverflow.com/a/24398613/395857

	Introduction
	Objectives
	General prediction framework
	General motivations
	Technical challenges
	Contributions
	Organization

	BeatDB
	Definitions
	Schema
	Condition scanner
	Prediction parameters
	Data assembling
	Event prediction
	Parameter selection
	OpenStack and NFS
	Distributed system architecture
	Worker logic
	Cleaning broken workers
	Conclusion

	The MIMIC data set
	MIMIC
	Arterial blood pressure measurement
	Beat onset detection
	Levels of noise

	The prediction problem
	Acute hypotensive episode (AHE)
	Objectives
	Condition
	Features
	Results

	Wavelets as features
	Objectives
	Wavelets
	Correlation between wavelets
	Experiments
	Prediction experiment
	Wavelets in addition to the other 14 features
	Impact of the size of the data set on the prediction accuracy
	Computational cost

	Gaussian process for parameter optimization
	Choosing the kernel
	Choosing the number of initial random experiments
	Distributed Gaussian Process

	Conclusions
	Contributions
	Future work
	Conclusion

	Abbreviations
	Synonyms
	Reading CSV files in Python: a benchmark
	On privacy and anonymization of personal data
	Column-oriented vs. row-oriented database
	Machine learning techniques
	Logistic regression
	Metrics

	Gaussian process regression
	Gaussian process definition
	The mean vector and the variance-covariance matrix
	The intuition behind a covariance matrix
	The regression problem
	Computing the covariance matrix
	Computational complexity

	Wavelet library
	Choice of library
	Benchmark of library

	Least correlated subset of wavelets from a correlation matrix
	Software design
	Populating BeatDB
	Beat onset detection
	Signal data transfer
	Beat validation
	Condition scanner
	Feature extraction

	Worker logic
	Results analysis
	Benchmarks
	Code statistics

